• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Improving Cu(II) sorption by biochar via pyrolyzation under CO2: the importance of inherent inorganic species

    Author(s)
    Wen, Ran
    Yuan, Bo
    Wang, Yang
    Cao, Weimin
    Liu, Yuan
    Jia, Yi
    Liu, Qiang
    Griffith University Author(s)
    Jia, Yi
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Biochar from Spartina alterniflora (SA) and rice straw (RS) under N2/CO2 were evaluated for Cu(II) removal from aqueous solution. The result indicates SA biochar prepared at 700 °C under CO2 can achieve a Cu(II) sorption capacity of 89.12 ± 2.77 mg/g, which is higher than that from N2 by about 50%. CO2 can promote the development of multi-porous structure, enhance specific surface area, and increase the amounts of hydroxyl and carboxyl groups on biochar. In addition, CO2 can inhibit the thermal decomposition of inorganic carbonate, such as MgCO3 and CaCO3 in biochar. These matters facilitate Cu(II) removal via the formation ...
    View more >
    Biochar from Spartina alterniflora (SA) and rice straw (RS) under N2/CO2 were evaluated for Cu(II) removal from aqueous solution. The result indicates SA biochar prepared at 700 °C under CO2 can achieve a Cu(II) sorption capacity of 89.12 ± 2.77 mg/g, which is higher than that from N2 by about 50%. CO2 can promote the development of multi-porous structure, enhance specific surface area, and increase the amounts of hydroxyl and carboxyl groups on biochar. In addition, CO2 can inhibit the thermal decomposition of inorganic carbonate, such as MgCO3 and CaCO3 in biochar. These matters facilitate Cu(II) removal via the formation of chemical precipitation of Cu2(OH)2CO3. The dissolution of inherent inorganic matter makes Cu(II) transformed into hydrolyzed species or amorphous precipitation, which contributes to about 75% (w/w) of Cu(II) removal. Metal exchange with complexed cations and the formation of basic cupric carbonate are time-consuming and responsible for about 24% (w/w) of Cu(II) removal.
    View less >
    Journal Title
    Environmental Science and Pollution Research
    DOI
    https://doi.org/10.1007/s11356-017-9753-3
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Chemical sciences
    Other chemical sciences not elsewhere classified
    Environmental sciences
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/352773
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander