• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training

    Thumbnail
    View/Open
    RobertsPUB4147.pdf (1.442Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Roberts, Llion A
    Raastad, Truls
    Markworth, James F
    Figueiredo, Vandre C
    Egner, Ingrid M
    Shield, Anthony
    Cameron-Smith, David
    Coombes, Jeff S
    Peake, Jonathan M
    Griffith University Author(s)
    Roberts, Llion A.
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men ...
    View more >
    We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellite cells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered.
    View less >
    Journal Title
    Journal of Physiology
    Volume
    593
    Issue
    18
    DOI
    https://doi.org/10.1113/JP270570
    Copyright Statement
    © 2015 Physiological Society. This is the peer reviewed version of the following article: Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training, The Journal of Physiology, 593 (18), 4285–4301, 2015, which has been published in final form at 10.1113/JP270570. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving (http://olabout.wiley.com/WileyCDA/Section/id-828039.html)
    Subject
    Biological sciences
    Biomedical and clinical sciences
    Exercise physiology
    Publication URI
    http://hdl.handle.net/10072/352962
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander