• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Equivalent hydrogen fugacity during electrochemical charging of some martensitic advanced high-strength steels

    Author(s)
    Venezuel, Jeffrey
    Gray, Evan
    Liu, Qinglong
    Zhou, Qingjun
    Tapia-Bastidas, Clotario
    Zhang, Mingxing
    Atrens, Andrej
    Griffith University Author(s)
    Gray, Evan M.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    A new thermal desorption spectroscopy apparatus was used to study hydrogen in four martensitic advanced high-strength steels (designated MS980, MS1180, MS1300 and MS1500) after gaseous hydrogen charging, and after hydrogen charging electrochemically in 0.1 M NaOH and in 3.5 wt.% NaCl. The hydrogen concentration did not correlate strongly with steel strength. For MS1500, a relationship was derived between equivalent hydrogen fugacity and the applied charging overpotential. Also for MS1500, the trap binding energies were evaluated to be 26.4 kJ mol−1 and 61.0 kJ mol−1, which were interpreted as dislocation and interface hydrogen ...
    View more >
    A new thermal desorption spectroscopy apparatus was used to study hydrogen in four martensitic advanced high-strength steels (designated MS980, MS1180, MS1300 and MS1500) after gaseous hydrogen charging, and after hydrogen charging electrochemically in 0.1 M NaOH and in 3.5 wt.% NaCl. The hydrogen concentration did not correlate strongly with steel strength. For MS1500, a relationship was derived between equivalent hydrogen fugacity and the applied charging overpotential. Also for MS1500, the trap binding energies were evaluated to be 26.4 kJ mol−1 and 61.0 kJ mol−1, which were interpreted as dislocation and interface hydrogen traps.
    View less >
    Journal Title
    Corrosion Science
    Volume
    127
    DOI
    https://doi.org/10.1016/j.corsci.2017.08.011
    Subject
    Civil engineering
    Materials engineering
    Materials engineering not elsewhere classified
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/353431
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander