• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Incorporating ecological functions in conservation decision making

    Thumbnail
    View/Open
    DeckerPUB4189.pdf (792.5Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Decker, Emilia
    Linke, Simon
    Hermoso, Virgilio
    Geist, Juergen
    Griffith University Author(s)
    Linke, Simon
    Hermoso, Virgilio
    Decker, Emilia
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Systematic conservation planning has become a standard approach globally, but prioritization of conservation efforts hardly considers species traits in decision making. This can be important for species persistence and thus adequacy of the conservation plan. Here, we developed and validated a novel approach of incorporating trophic information into a systematic conservation planning framework. We demonstrate the benefits of this approach using fish data from Europe's second largest river, the Danube. Our results show that adding trophic information leads to a different spatial configuration of priority areas at no additional ...
    View more >
    Systematic conservation planning has become a standard approach globally, but prioritization of conservation efforts hardly considers species traits in decision making. This can be important for species persistence and thus adequacy of the conservation plan. Here, we developed and validated a novel approach of incorporating trophic information into a systematic conservation planning framework. We demonstrate the benefits of this approach using fish data from Europe's second largest river, the Danube. Our results show that adding trophic information leads to a different spatial configuration of priority areas at no additional cost. This can enhance identification of priority refugia for species in the lower position of the trophic web while simultaneously identifying areas that represent a more diverse species pool. Our methodological approach to incorporating species traits into systematic conservation planning is generally applicable, irrespective of realm, geographical area, and species composition and can potentially lead to more adequate conservation plans.
    View less >
    Journal Title
    Ecology and Evolution
    Volume
    7
    Issue
    20
    DOI
    https://doi.org/10.1002/ece3.3353
    Copyright Statement
    © The Author(s) 2017. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Ecology
    Ecology not elsewhere classified
    Evolutionary biology
    Publication URI
    http://hdl.handle.net/10072/353988
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander