• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss

    Author(s)
    Che, Rongxiao
    Wang, Fang
    Wang, Weijin
    Zhang, Jing
    Zhao, Xing
    Rui, Yichao
    Xu, Zhihong
    Wang, Yanfen
    Hao, Yanbin
    Cui, Xiaoyong
    Griffith University Author(s)
    Xu, Zhihong
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Alpine meadows on the Tibetan Plateau have experienced severe degradation in recent decades. Although the effects of alpine meadow degradation on soil properties have been well documented, there is still a paucity of knowledge regarding the responses of nitrogen-cycling microbes (NCMs) to degradation and their links to the changes in soil properties. Here, we systematically determined the effects of degraded patch formation on soil properties (i.e., total carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen, available phosphorus, dissolved organic carbon, moisture, δ15N, δ13C, and pH) and NCMs (based on nifH, amoA, ...
    View more >
    Alpine meadows on the Tibetan Plateau have experienced severe degradation in recent decades. Although the effects of alpine meadow degradation on soil properties have been well documented, there is still a paucity of knowledge regarding the responses of nitrogen-cycling microbes (NCMs) to degradation and their links to the changes in soil properties. Here, we systematically determined the effects of degraded patch formation on soil properties (i.e., total carbon, total nitrogen, ammonium nitrogen, nitrate nitrogen, available phosphorus, dissolved organic carbon, moisture, δ15N, δ13C, and pH) and NCMs (based on nifH, amoA, narG, nirK, and nirS genes and their transcripts) across three Tibetan alpine meadows at different degradation stages. Results showed that compared to the original grassed patches, the contents of most soil nutrients (e.g., carbon, nitrogen, and phosphorus) were significantly decreased in the degraded patches across the study sites. Degraded patches also tended to have higher soil δ15N values and nitrate contents. Among the aforementioned NCMs, soil diazotrophs and denitrifiers only showed weak responses to the patch formation, while ammonia-oxidizing microbes showed the highest consistency and sensitivity in response to the patch formation across the study sites. The abundance of amoA gene and archaeal amoA mRNA significantly increased in the degraded patches, and they were positively correlated with soil δ15N values and nitrate nitrogen contents, but negatively correlated with soil total nitrogen and inorganic nitrogen contents. These results suggest that the increased ammonia-oxidizing microbial abundance may be an important driver of soil nitrogen loss during degraded patch formation in alpine meadows.
    View less >
    Journal Title
    Biogeochemistry
    Volume
    136
    Issue
    3
    DOI
    https://doi.org/10.1007/s10533-017-0399-5
    Subject
    Other chemical sciences
    Geochemistry
    Soil biology
    Environmental management
    Publication URI
    http://hdl.handle.net/10072/355055
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander