Restart and random walk in local search for maximum vertex weight cliques with evaluations in clustering aggregation

View/ Open
File version
Version of Record (VoR)
Author(s)
Fan, Yi
Li, Nan
Li, Chengqian
Ma, Zongjie
Latecki, Longin Jan
Su, Kaile
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
The Maximum Vertex Weight Clique (MVWC) problem is NP-hard and also important in real-world applications. In this paper we propose to use the restart and the random walk strategies to improve local search for MVWC. If a solution is revisited in some particular situation, the search will restart. In addition, when the local search has no other options except dropping vertices, it will use random walk. Experimental results show that our solver outperforms state-of-the-art solvers in DIMACS and finds a new best-known solution. Also it is the unique solver which is comparable with state-of-the-art methods on both BHOSLIB and ...
View more >The Maximum Vertex Weight Clique (MVWC) problem is NP-hard and also important in real-world applications. In this paper we propose to use the restart and the random walk strategies to improve local search for MVWC. If a solution is revisited in some particular situation, the search will restart. In addition, when the local search has no other options except dropping vertices, it will use random walk. Experimental results show that our solver outperforms state-of-the-art solvers in DIMACS and finds a new best-known solution. Also it is the unique solver which is comparable with state-of-the-art methods on both BHOSLIB and large crafted graphs. Furthermore we evaluated our solver in clustering aggregation. Experimental results on a number of real data sets demonstrate that our solver outperforms the state-of-the-art for solving the derived MVWC problem and helps improve the final clustering results.
View less >
View more >The Maximum Vertex Weight Clique (MVWC) problem is NP-hard and also important in real-world applications. In this paper we propose to use the restart and the random walk strategies to improve local search for MVWC. If a solution is revisited in some particular situation, the search will restart. In addition, when the local search has no other options except dropping vertices, it will use random walk. Experimental results show that our solver outperforms state-of-the-art solvers in DIMACS and finds a new best-known solution. Also it is the unique solver which is comparable with state-of-the-art methods on both BHOSLIB and large crafted graphs. Furthermore we evaluated our solver in clustering aggregation. Experimental results on a number of real data sets demonstrate that our solver outperforms the state-of-the-art for solving the derived MVWC problem and helps improve the final clustering results.
View less >
Conference Title
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)
Copyright Statement
© 2017 International Joint Conference on Artificial Intelligence. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the Conference's website for access to the definitive, published version.
Subject
Machine learning