• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A modified DGT technique for the simultaneous measurement of dissolved inorganic nitrogen and phosphorus in freshwaters

    Author(s)
    Huang, Jianyin
    Bennett, William W
    Teasdale, Peter R
    Kankanamge, Nadeeka Rathnayake
    Welsh, David T
    Griffith University Author(s)
    Bennett, Will W.
    Huang, Jianyin
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    A modified diffusive gradients in thin films (DGT) technique uses both a mixed binding layer (PrCH and A520E resins for NH4-N and NO3-N, respectively) and multiple binding layers (Metsorb binding layer for PO4-P overlying the mixed binding layer) for the simultaneous measurement of dissolved inorganic nitrogen (nitrate and ammonium) and phosphate in freshwater (INP-DGT). High uptake and elution efficiencies were determined for a mixed (PrCH/A520E) binding gel for dissolved inorganic nitrogen and an agarose-based Metsorb binding layer for PO4-P. Diffusion coefficients (D) obtained from DGT time-series experiments (conductivity ...
    View more >
    A modified diffusive gradients in thin films (DGT) technique uses both a mixed binding layer (PrCH and A520E resins for NH4-N and NO3-N, respectively) and multiple binding layers (Metsorb binding layer for PO4-P overlying the mixed binding layer) for the simultaneous measurement of dissolved inorganic nitrogen (nitrate and ammonium) and phosphate in freshwater (INP-DGT). High uptake and elution efficiencies were determined for a mixed (PrCH/A520E) binding gel for dissolved inorganic nitrogen and an agarose-based Metsorb binding layer for PO4-P. Diffusion coefficients (D) obtained from DGT time-series experiments (conductivity 180 μS cm−1) for NH4-N, NO3-N and PO4-P agreed well with those measured using individual DGT techniques in previous studies, but were characterised over a wider range of ionic strengths here. D for NO3-N and PO4-P were constant over a range of ionic strengths (between 100 and 800 μS cm−1) while the diffusion coefficient for NH4-N decreased with increasing ionic strength, as reported previously. The measurement of NH4-N, NO3-N and PO4-P using the INP-DGT was independent of pH (3.5–8.5) and quantitative over varying ionic strength ranges (up to 0.004 mol L−1 NaCl for NH4-N, up to 0.014 mol L−1 NaCl for NO3-N and over 0.1 mol L−1 NaCl for PO4-P) for a 24 h deployment time. Performance of INP-DGT in synthetic freshwaters with differing conductivity indicated the three nutrients were affected differently, with NH4-N measurements being most sensitive. Representative performance was determined for NO3-N (90–330 μS cm−1) and PO4-P (all tested conductivities) over a 72 h deployment period and for NH4-N (<330 μS cm−1) over a 24 h deployment period. Field validations showed that the ratios of INP-DGT concentrations to the average concentrations from grab samples were generally between 0.80 and 1.13 over 24 and 48 h deployment periods. To ensure the representative performance of INP-DGT for all three nutrients, the conductivity should not exceed 400 μS cm−1 and deployment times should be no longer than 24 h. The results of this study have demonstrated that INP-DGT could provide a cost-effective monitoring technique for measuring time-weighted average concentrations of dissolved inorganic nutrients in many freshwaters.
    View less >
    Journal Title
    Analytica Chimica Acta
    Volume
    988
    DOI
    https://doi.org/10.1016/j.aca.2017.08.024
    Subject
    Analytical chemistry
    Analytical chemistry not elsewhere classified
    Other chemical sciences
    Publication URI
    http://hdl.handle.net/10072/355168
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander