Development of a qualitative relationship between inhibition percentage and both incubation time and inhibitor concentration for inhibition biosensors - theoretical and practical considerations
Abstract
Theoretical and practical insights into the design and development of immobilised enzyme inhibition biosensors are reported. A general mathematical expression relating the percent of enzyme inhibition (i.e. the analytical signal) to both the inhibitor concentration and the incubation time is presented. The relevant physical, chemical and biochemical parameters required by the model are developed and discussed in terms of the inhibition of acetylcholinesterase by the organophosphorous pesticide, paraoxon. A second enzyme, choline oxidase and an amperometric transducer are used to facilitate the determination acetylcholinesterase ...
View more >Theoretical and practical insights into the design and development of immobilised enzyme inhibition biosensors are reported. A general mathematical expression relating the percent of enzyme inhibition (i.e. the analytical signal) to both the inhibitor concentration and the incubation time is presented. The relevant physical, chemical and biochemical parameters required by the model are developed and discussed in terms of the inhibition of acetylcholinesterase by the organophosphorous pesticide, paraoxon. A second enzyme, choline oxidase and an amperometric transducer are used to facilitate the determination acetylcholinesterase inhibitor.
View less >
View more >Theoretical and practical insights into the design and development of immobilised enzyme inhibition biosensors are reported. A general mathematical expression relating the percent of enzyme inhibition (i.e. the analytical signal) to both the inhibitor concentration and the incubation time is presented. The relevant physical, chemical and biochemical parameters required by the model are developed and discussed in terms of the inhibition of acetylcholinesterase by the organophosphorous pesticide, paraoxon. A second enzyme, choline oxidase and an amperometric transducer are used to facilitate the determination acetylcholinesterase inhibitor.
View less >
Journal Title
Biosensors and Bioelectronics
Volume
16
Subject
Analytical chemistry
Biomedical engineering
Nanotechnology