Show simple item record

dc.contributor.authorSaxby, David John
dc.contributor.authorBryant, Adam L
dc.contributor.authorWang, Xinyang
dc.contributor.authorModenese, Luca
dc.contributor.authorGerus, Pauline
dc.contributor.authorKonrath, Jason M
dc.contributor.authorBennell, Kim L
dc.contributor.authorFortin, Karine
dc.contributor.authorWrigley, Tim
dc.contributor.authorCicuttini, Flavia M
dc.contributor.authorVertullo, Christopher J
dc.contributor.authorFeller, Julian A
dc.contributor.authorWhitehead, Tim
dc.contributor.authorGallie, Price
dc.contributor.authorLloyd, David G
dc.date.accessioned2017-12-12T04:10:45Z
dc.date.available2017-12-12T04:10:45Z
dc.date.issued2017
dc.identifier.issn2325-9671
dc.identifier.doi10.1177/2325967117722506
dc.identifier.urihttp://hdl.handle.net/10072/355549
dc.description.abstractBackground: Prevention of knee osteoarthritis (OA) following anterior cruciate ligament (ACL) rupture and reconstruction is vital. Risk of postreconstruction knee OA is markedly increased by concurrent meniscal injury. It is unclear whether reconstruction results in normal relationships between tibiofemoral contact forces and cartilage morphology and whether meniscal injury modulates these relationships. Hypotheses: Since patients with isolated reconstructions (ie, without meniscal injury) are at lower risk for knee OA, we predicted that relationships between tibiofemoral contact forces and cartilage morphology would be similar to those of normal, healthy knees 2 to 3 years postreconstruction. In knees with meniscal injuries, these relationships would be similar to those reported in patients with knee OA, reflecting early degenerative changes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: Three groups were examined: (1) 62 patients who received single-bundle hamstring reconstruction with an intact, uninjured meniscus (mean age, 29.8 ± 6.4 years; mean weight, 74.9 ± 13.3 kg); (2) 38 patients with similar reconstruction with additional meniscal injury (ie, tear, repair) or partial resection (mean age, 30.6 ± 6.6 years; mean weight, 83.3 ± 14.3 kg); and (3) 30 ligament-normal, healthy individuals (mean age, 28.3 ± 5.2 years; mean weight, 74.9 ± 14.9 kg) serving as controls. All patients underwent magnetic resonance imaging to measure the medial and lateral tibial articular cartilage morphology (volumes and thicknesses). An electromyography-driven neuromusculoskeletal model determined medial and lateral tibiofemoral contact forces during walking. General linear models were used to assess relationships between tibiofemoral contact forces and cartilage morphology. Results: In control knees, cartilage was thicker compared with that of isolated and meniscal-injured ACL-reconstructed knees, while greater contact forces were related to both greater tibial cartilage volumes (medial: R2 = 0.43, β = 0.62, P = .000; lateral: R2 = 0.19, β = 0.46, P = .03) and medial thicknesses (R2 = 0.24, β = 0.48, P = .01). In the overall group of ACL-reconstructed knees, greater contact forces were related to greater lateral cartilage volumes (R2 = 0.08, β = 0.28, P = .01). In ACL-reconstructed knees with lateral meniscal injury, greater lateral contact forces were related to greater lateral cartilage volumes (R2 = 0.41, β = 0.64, P = .001) and thicknesses (R2 = 0.20, β = 0.46, P = .04). Conclusion: At 2 to 3 years postsurgery, ACL-reconstructed knees had thinner cartilage compared with healthy knees, and there were no positive relationships between medial contact forces and cartilage morphology. In lateral meniscal-injured reconstructed knees, greater contact forces were related to greater lateral cartilage volumes and thicknesses, although it was unclear whether this was an adaptive response or associated with degeneration. Future clinical studies may seek to establish whether cartilage morphology can be modified through rehabilitation programs targeting contact forces directly in addition to the current rehabilitation foci of restoring passive and dynamic knee range of motion, knee strength, and functional performance.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherSage Publications, Inc.
dc.relation.ispartofpagefrom2325967117722506-1
dc.relation.ispartofpageto2325967117722506-13
dc.relation.ispartofissue8
dc.relation.ispartofjournalOrthopaedic Journal of Sports Medicine
dc.relation.ispartofvolume5
dc.subject.fieldofresearchClinical sciences
dc.subject.fieldofresearchSports science and exercise
dc.subject.fieldofresearchSports science and exercise not elsewhere classified
dc.subject.fieldofresearchcode3202
dc.subject.fieldofresearchcode4207
dc.subject.fieldofresearchcode420799
dc.titleRelationships Between Tibiofemoral Contact Forces and Cartilage Morphology at 2 to 3 Years After Single-Bundle Hamstring Anterior Cruciate Ligament Reconstruction and in Healthy Knees
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dcterms.licensehttp://creativecommons.org/licenses/by/4.0/
dc.description.versionVersion of Record (VoR)
gro.facultyGriffith Health, School of Allied Health Sciences
gro.rights.copyright© The Author(s) 2017. This open-access article is published and distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits any use, distribution, and reproduction of the article in any medium without further permission, provided the original author and source are credited.
gro.hasfulltextFull Text
gro.griffith.authorLloyd, David
gro.griffith.authorSaxby, David J.


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record