• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Electricity consumption, Peak load and GDP in Saudi Arabia: A time series analysis

    Thumbnail
    View/Open
    TularamPUB2676.pdf (1.543Mb)
    File version
    Version of Record (VoR)
    Author(s)
    Tularam, GA
    Alsaedi, Y
    Griffith University Author(s)
    Tularam, Gurudeo A.
    Alsaedi, Yasir H.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Energy is one of the most important resources of the national economy, which plays an important role in economic production and life more generally. Given its significance, this paper formulates prediction models for electricity consumption (EC), peak load (PL) and gross domestic product (GDP) in Saudi Arabia by employing the Autoregressive Integrated Moving Average (ARIMA) model; using time series data from 1990–2015. It also examines the relationships between EC, PL and GDP through a vector auto-regression (VAR) analysis, which includes Granger causality (GC) testing, impulse response, and forecast error variance decompositions ...
    View more >
    Energy is one of the most important resources of the national economy, which plays an important role in economic production and life more generally. Given its significance, this paper formulates prediction models for electricity consumption (EC), peak load (PL) and gross domestic product (GDP) in Saudi Arabia by employing the Autoregressive Integrated Moving Average (ARIMA) model; using time series data from 1990–2015. It also examines the relationships between EC, PL and GDP through a vector auto-regression (VAR) analysis, which includes Granger causality (GC) testing, impulse response, and forecast error variance decompositions (FEVD). The results show that ARIMA (1, 1, 1), ARIMA (0, 1, 0) and ARIMA (0, 1, 0) were the most appropriate univariate models of EC, PL and GDP, respectively, based on the Akaike information criterion. The results also revealed significant unidirectional granger causality from PL to EC and PL to GDP. The variance decomposition reveals that in the case of EC, the major changes arise from its own innovation and the contribution from GDP at the 1%.
    View less >
    Conference Title
    Proceedings - 22nd International Congress on Modelling and Simulation, MODSIM 2017
    Publisher URI
    https://www.mssanz.org.au/modsim2017/
    Copyright Statement
    © 2017 Modellling & Simulation Society of Australia & New Zealand. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this conference please refer to the conference’s website or contact the author(s).
    Subject
    Numerical and computational mathematics not elsewhere classified
    Environmental assessment and monitoring
    Publication URI
    http://hdl.handle.net/10072/355896
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander