Show simple item record

dc.contributor.authorRybachuk, Maksymen_US
dc.contributor.authorMauger, Charl讥 Aliceen_US
dc.contributor.authorFiedler, Thomasen_US
dc.contributor.authorOechsner, Andreasen_US
dc.description.abstractThe anisotropic mechanical properties of parts that are fabricated using acrylonitrile butadiene styrene (ABS) polymer relative to part-built orientation employing the fused deposition modelling process are reported in this work. ABSplus-P430 polymer was used to investigate the effects of infill orientation on the parts’ mechanical properties under tensile and compression loading. Results revealed that infill orientation strongly affected the tensile properties of fabricated ABS samples. Specifically, the values for Young’s modulus ranged from ~1.5 to ~2.1 GPa, ultimate tensile strength from ~12.0 to ~22.0 MPa, yield strength from ~1.0 to ~21.0 MPa, and elongation-at-break from ~0.2 to ~4.8% for different infill orientations. Samples with infill orientation aligned to the vertical (i.e. Z-) axis displayed the highest values relative to all other infill orientations investigated. Mechanical properties anisotropy was lower for parts under compressive loading, such that the Young’s modulus, ultimate compressive and yield strength were weakly correlated with infill orientation apart from samples whose built orientation was aligned at 45° to the vertical Z-axis. The latter samples displayed inferior mechanical properties under all compressive tests. The effects of sample gauge thickness on tensile properties and ABS sample micro- and bulk- hardness with respect to infill orientation are also discussed.en_US
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.ispartofjournalJournal of Polymer Engineeringen_US
dc.subject.fieldofresearchMaterials Engineering not elsewhere classifieden_US
dc.titleAnisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymeren_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.facultyGriffith Sciences, School of Engineering and Built Environmenten_US
gro.rights.copyright© 2017 Walter de Gruyter & Co. KG Publishers. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.en_US
gro.hasfulltextFull Text

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record