• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Spatial Factor, Rather than Elevated CO2, Controls the Soil Bacterial Community in a Temperate Forest Ecosystem

    Thumbnail
    View/Open
    66582_1.pdf (856.7Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Ge, Yuan
    Chen, Chengrong
    Xu, Zhihong
    Oren, Ram
    He, Ji-Zheng
    Griffith University Author(s)
    Xu, Zhihong
    Chen, Chengrong
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    The global atmospheric carbon dioxide (CO2) concentration is expected to increase continuously over the next century. However, little is known about the responses of soil bacterial communities to elevated CO2 in terrestrial ecosystems. This study aimed to partition the relative influences of CO2, nitrogen (N), and the spatial factor (different sampling plots) on soil bacterial communities at the free-air CO2 enrichment research site in Duke Forest, North Carolina, by two independent techniques: an entirely sequencing-based approach and denaturing gradient gel electrophoresis. Multivariate regression tree analysis ...
    View more >
    The global atmospheric carbon dioxide (CO2) concentration is expected to increase continuously over the next century. However, little is known about the responses of soil bacterial communities to elevated CO2 in terrestrial ecosystems. This study aimed to partition the relative influences of CO2, nitrogen (N), and the spatial factor (different sampling plots) on soil bacterial communities at the free-air CO2 enrichment research site in Duke Forest, North Carolina, by two independent techniques: an entirely sequencing-based approach and denaturing gradient gel electrophoresis. Multivariate regression tree analysis demonstrated that the spatial factor could explain more than 70% of the variation in soil bacterial diversity and 20% of the variation in community structure, while CO2 or N treatment explains less than 3% of the variation. For the effects of soil environmental heterogeneity, the diversity estimates were distinguished mainly by the total soil N and C/N ratio. Bacterial diversity estimates were positively correlated with total soil N and negatively correlated with C/N ratio. There was no correlation between the overall bacterial community structures and the soil properties investigated. This study contributes to the information about the effects of elevated CO2 and soil fertility on soil bacterial communities and the environmental factors shaping the distribution patterns of bacterial community diversity and structure in temperate forest soils.
    View less >
    Journal Title
    Applied and Environmental Microbiology
    Volume
    76
    Issue
    22
    DOI
    https://doi.org/10.1128/AEM.00831-10
    Copyright Statement
    © 2010 American Society for Microbiology. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Soil biology
    Microbiology
    Medical microbiology
    Publication URI
    http://hdl.handle.net/10072/35843
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander