• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Graph PCA Hashing for Similarity Search

    Author(s)
    Zhu, Xiaofeng
    Li, Xuelong
    Zhang, Shichao
    Xu, Zongben
    Yu, Litao
    Wang, Can
    Griffith University Author(s)
    Wang, Can
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    This paper proposes a new hashing framework to conduct similarity search via the following steps: first, employing linear clustering methods to obtain a set of representative data points and a set of landmarks of the big dataset; second, using the landmarks to generate a probability representation for each data point. The proposed probability representation method is further proved to preserve the neighborhood of each data point. Third, PCA is integrated with manifold learning to lean the hash functions using the probability representations of all representative data points. As a consequence, the proposed hashing method ...
    View more >
    This paper proposes a new hashing framework to conduct similarity search via the following steps: first, employing linear clustering methods to obtain a set of representative data points and a set of landmarks of the big dataset; second, using the landmarks to generate a probability representation for each data point. The proposed probability representation method is further proved to preserve the neighborhood of each data point. Third, PCA is integrated with manifold learning to lean the hash functions using the probability representations of all representative data points. As a consequence, the proposed hashing method achieves efficient similarity search (with linear time complexity) and effective hashing performance and high generalization ability (simultaneously preserving two kinds of complementary similarity structures, i.e., local structures via manifold learning and global structures via PCA). Experimental results on four public datasets clearly demonstrate the advantages of our proposed method in terms of similarity search, compared to the state-of-the-art hashing methods.
    View less >
    Journal Title
    IEEE Transactions on Multimedia
    Volume
    19
    Issue
    9
    DOI
    https://doi.org/10.1109/TMM.2017.2703636
    Subject
    Engineering
    Publication URI
    http://hdl.handle.net/10072/360723
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander