Biocompatibility of Photopolymers in 3D Printing

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Alifui-Segbaya, Frank
Varma, Sony
Lieschke, Graham J
George, Roy
Year published
2017
Metadata
Show full item recordAbstract
The biocompatibility of photopolymers in additive manufacturing (AM) often referred to as 3D printing (3DP) is an issue of concern due to, among other things, the unique parameters of the manufacturing process, which can influence the physical, chemical, and biological properties of AM-produced devices. The quality of AM-produced devices may consequently vary when identical parts are built using different 3D printers or even when the same 3D printer, parameters, process steps, and materials are used. In this novel study, representative materials built with stereolithography and material jetting processes were subjected to ...
View more >The biocompatibility of photopolymers in additive manufacturing (AM) often referred to as 3D printing (3DP) is an issue of concern due to, among other things, the unique parameters of the manufacturing process, which can influence the physical, chemical, and biological properties of AM-produced devices. The quality of AM-produced devices may consequently vary when identical parts are built using different 3D printers or even when the same 3D printer, parameters, process steps, and materials are used. In this novel study, representative materials built with stereolithography and material jetting processes were subjected to biological evaluation using the Organization for Economic Cooperation and Development (OECD) fish embryo test designed to determine acute toxicity of chemicals on embryonic stages of fish. The study demonstrates that the AM materials are toxic in zebrafish assays; however, the adverse effects of toxicity in some materials were reduced significantly after treatment with ethanol. Within the limitations of the study, it is evident that material composition and cleaning method are significant parameters by which the biological risks of photopolymers in 3DP can be assessed. Furthermore, the zebrafish biocompatibility assay is a reliable assessment tool for quantifying the toxicity of leachates in AM materials.
View less >
View more >The biocompatibility of photopolymers in additive manufacturing (AM) often referred to as 3D printing (3DP) is an issue of concern due to, among other things, the unique parameters of the manufacturing process, which can influence the physical, chemical, and biological properties of AM-produced devices. The quality of AM-produced devices may consequently vary when identical parts are built using different 3D printers or even when the same 3D printer, parameters, process steps, and materials are used. In this novel study, representative materials built with stereolithography and material jetting processes were subjected to biological evaluation using the Organization for Economic Cooperation and Development (OECD) fish embryo test designed to determine acute toxicity of chemicals on embryonic stages of fish. The study demonstrates that the AM materials are toxic in zebrafish assays; however, the adverse effects of toxicity in some materials were reduced significantly after treatment with ethanol. Within the limitations of the study, it is evident that material composition and cleaning method are significant parameters by which the biological risks of photopolymers in 3DP can be assessed. Furthermore, the zebrafish biocompatibility assay is a reliable assessment tool for quantifying the toxicity of leachates in AM materials.
View less >
Journal Title
3D Printing and Additive Manufacturing
Volume
4
Issue
4
Copyright Statement
©
This is a copy of an article published in the 3D Printing and Additive Manufacturing. Copyright 2017 Mary Ann Liebert, Inc. Final publication is available from Mary Ann Liebert, Inc., publishers https://doi.org/10.1089/3dp.2017.0064
Subject
Materials engineering
Biochemistry and cell biology
Dentistry