• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Joy of Forgetting: Faster Anytime Search via Restarting

    Thumbnail
    View/Open
    64992_1.pdf (266.5Kb)
    Author(s)
    Richter, Silvia
    Thayer, Jordan
    Ruml, Wheeler
    Griffith University Author(s)
    Richter, Silvia
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Anytime search algorithms solve optimisation problems by quickly finding a (usually suboptimal) first solution and then finding improved solutions when given additional time. To deliver an initial solution quickly, they are typically greedy with respect to the heuristic cost-to-go estimate h. In this paper, we show that this low-h bias can cause poor performance if the greedy search makes early mistakes. Building on this observation, we present a new anytime approach that restarts the search from the initial state every time a new solution is found. We demonstrate the utility of our method via experiments in PDDL ...
    View more >
    Anytime search algorithms solve optimisation problems by quickly finding a (usually suboptimal) first solution and then finding improved solutions when given additional time. To deliver an initial solution quickly, they are typically greedy with respect to the heuristic cost-to-go estimate h. In this paper, we show that this low-h bias can cause poor performance if the greedy search makes early mistakes. Building on this observation, we present a new anytime approach that restarts the search from the initial state every time a new solution is found. We demonstrate the utility of our method via experiments in PDDL planning as well as other domains, and show that it is particularly useful for problems where the heuristic has systematic errors.
    View less >
    Conference Title
    ICAPS 2010 Conference Proceedings
    Publisher URI
    http://www.icaps10.upf.edu/
    Copyright Statement
    © 2010 AAAI Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the conference's website for access to the definitive, published version.
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/36142
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander