The Joy of Forgetting: Faster Anytime Search via Restarting

View/ Open
Author(s)
Richter, Silvia
Thayer, Jordan
Ruml, Wheeler
Griffith University Author(s)
Year published
2010
Metadata
Show full item recordAbstract
Anytime search algorithms solve optimisation problems by quickly finding a (usually suboptimal) first solution and then finding improved solutions when given additional time. To deliver an initial solution quickly, they are typically greedy with respect to the heuristic cost-to-go estimate h. In this paper, we show that this low-h bias can cause poor performance if the greedy search makes early mistakes. Building on this observation, we present a new anytime approach that restarts the search from the initial state every time a new solution is found. We demonstrate the utility of our method via experiments in PDDL ...
View more >Anytime search algorithms solve optimisation problems by quickly finding a (usually suboptimal) first solution and then finding improved solutions when given additional time. To deliver an initial solution quickly, they are typically greedy with respect to the heuristic cost-to-go estimate h. In this paper, we show that this low-h bias can cause poor performance if the greedy search makes early mistakes. Building on this observation, we present a new anytime approach that restarts the search from the initial state every time a new solution is found. We demonstrate the utility of our method via experiments in PDDL planning as well as other domains, and show that it is particularly useful for problems where the heuristic has systematic errors.
View less >
View more >Anytime search algorithms solve optimisation problems by quickly finding a (usually suboptimal) first solution and then finding improved solutions when given additional time. To deliver an initial solution quickly, they are typically greedy with respect to the heuristic cost-to-go estimate h. In this paper, we show that this low-h bias can cause poor performance if the greedy search makes early mistakes. Building on this observation, we present a new anytime approach that restarts the search from the initial state every time a new solution is found. We demonstrate the utility of our method via experiments in PDDL planning as well as other domains, and show that it is particularly useful for problems where the heuristic has systematic errors.
View less >
Conference Title
ICAPS 2010 Conference Proceedings
Publisher URI
Copyright Statement
© 2010 AAAI Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the conference's website for access to the definitive, published version.
Subject
Artificial Intelligence and Image Processing not elsewhere classified