• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Spatial and Temporal Variability of Longshore Transport Along Gold Coast, Australia

    Thumbnail
    View/Open
    63106_1.pdf (267.3Kb)
    Author(s)
    Splinter, KD
    Golshani, A
    Stuart, G
    Tomlinson, R
    Griffith University Author(s)
    Tomlinson, Rodger B.
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Spatial and temporal variability of longshore transport potential for a 35-km stretch of sandy coastline on the east coast of Australia is examined using a 25-year data set. Six-hourly offshore wave data is binned into yearly wave classes using a global k-means algorithm that accounts for wave height, period, and direction simultaneously. Wave class estimates are shoaled into the nearshore using MIKE 21 Spectral Wave (SW) model. Longshore transport is calculated using the formulas of Kamphuis (1991; 2002) and Bayram et al. (2007) and show good agreement with previously published estimates for the Gold Coast, suggesting the ...
    View more >
    Spatial and temporal variability of longshore transport potential for a 35-km stretch of sandy coastline on the east coast of Australia is examined using a 25-year data set. Six-hourly offshore wave data is binned into yearly wave classes using a global k-means algorithm that accounts for wave height, period, and direction simultaneously. Wave class estimates are shoaled into the nearshore using MIKE 21 Spectral Wave (SW) model. Longshore transport is calculated using the formulas of Kamphuis (1991; 2002) and Bayram et al. (2007) and show good agreement with previously published estimates for the Gold Coast, suggesting the wave classification scheme sufficiently represents the variability in yearly wave data. Results show large temporal and spatial variability of transport potential along the coastline. Spatial variation is attributed to shoreline orientation and wave exposure, while temporal variability is significantly correlated with variations in the Southern Oscillation Index.
    View less >
    Conference Title
    Proceedings of the Coastal Engineering Conference
    DOI
    https://doi.org/10.9753/icce.v32.sediment.95
    Copyright Statement
    © The Author(s) 2010. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Ocean engineering
    Publication URI
    http://hdl.handle.net/10072/36154
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander