Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery
Author(s)
Liu, Jie
Galpaya, Dilini GD
Yan, Lijing
Sun, Minghao
Lin, Zhan
Yan, Cheng
Liang, Chengdu
Zhang, Shanqing
Griffith University Author(s)
Year published
2017
Metadata
Show full item recordAbstract
High-loading electrodes play a crucial role in the practical applications of high-energy-density batteries, which are especially challenging for lithium–sulfur (Li–S) batteries. Herein, a mechanically robust network binder was constructed by weaving dual biopolymers (i.e., guar gum and xanthan gum) via the intermolecular binding effect of extensive functional groups in both polymers. This network binder was capable of effectively preventing polysulfides within the electrode from shuttling and, consequently, improved electrochemical performance. A remarkably high sulfur loading of 19.8 mg cm−2 and an ultrahigh areal capacity ...
View more >High-loading electrodes play a crucial role in the practical applications of high-energy-density batteries, which are especially challenging for lithium–sulfur (Li–S) batteries. Herein, a mechanically robust network binder was constructed by weaving dual biopolymers (i.e., guar gum and xanthan gum) via the intermolecular binding effect of extensive functional groups in both polymers. This network binder was capable of effectively preventing polysulfides within the electrode from shuttling and, consequently, improved electrochemical performance. A remarkably high sulfur loading of 19.8 mg cm−2 and an ultrahigh areal capacity of 26.4 mA h cm−2 were achieved as a result of the robust mechanical properties of the network binder. This study paves a new way for obtaining high-energy-density batteries by the simple application of robust network biopolymer binders that are inherently low-cost and environmentally friendly.
View less >
View more >High-loading electrodes play a crucial role in the practical applications of high-energy-density batteries, which are especially challenging for lithium–sulfur (Li–S) batteries. Herein, a mechanically robust network binder was constructed by weaving dual biopolymers (i.e., guar gum and xanthan gum) via the intermolecular binding effect of extensive functional groups in both polymers. This network binder was capable of effectively preventing polysulfides within the electrode from shuttling and, consequently, improved electrochemical performance. A remarkably high sulfur loading of 19.8 mg cm−2 and an ultrahigh areal capacity of 26.4 mA h cm−2 were achieved as a result of the robust mechanical properties of the network binder. This study paves a new way for obtaining high-energy-density batteries by the simple application of robust network biopolymer binders that are inherently low-cost and environmentally friendly.
View less >
Journal Title
Energy & Environmental Science
Volume
10
Issue
3
Subject
Power and Energy Systems Engineering (excl. Renewable Power)