Inhibition of Aurora A and Aurora B is required for the sensitivity of HPV-driven cervical cancers to Aurora kinase inhibitors
Author(s)
Martin, David
Fallaha, Sora
Proctor, Martina
Stevenson, Alexander
Perrin, Lewis
McMillan, Nigel
Gabrielli, Brian
Year published
2017
Metadata
Show full item recordAbstract
The activity and efficacy of Aurora inhibitors have been reported in a wide range of cancer types. The most prominent Aurora inhibitor is alisertib, an investigational Aurora inhibitor that has been the subject of more than 30 clinical trials. Alisertib has inhibitory activity against both Aurora A and B, although it is considered to be primarily an Aurora A inhibitor in vivo. Here, we show that alisertib inhibits both Aurora A and B in vivo in preclinical models of HPV-driven cervical cancer, and that it is the inhibition of Aurora A and B that provides the selectivity and efficacy of this drug in vivo in this disease ...
View more >The activity and efficacy of Aurora inhibitors have been reported in a wide range of cancer types. The most prominent Aurora inhibitor is alisertib, an investigational Aurora inhibitor that has been the subject of more than 30 clinical trials. Alisertib has inhibitory activity against both Aurora A and B, although it is considered to be primarily an Aurora A inhibitor in vivo. Here, we show that alisertib inhibits both Aurora A and B in vivo in preclinical models of HPV-driven cervical cancer, and that it is the inhibition of Aurora A and B that provides the selectivity and efficacy of this drug in vivo in this disease setting. We also present formal evidence that alisertib requires progression through mitosis for its efficacy, and that it is unlikely to combine with drugs that promote a G2 DNA damage checkpoint response. This work demonstrates that inhibition of Aurora A and B is required for effective control of HPV-driven cancers by Aurora kinase inhibitors.
View less >
View more >The activity and efficacy of Aurora inhibitors have been reported in a wide range of cancer types. The most prominent Aurora inhibitor is alisertib, an investigational Aurora inhibitor that has been the subject of more than 30 clinical trials. Alisertib has inhibitory activity against both Aurora A and B, although it is considered to be primarily an Aurora A inhibitor in vivo. Here, we show that alisertib inhibits both Aurora A and B in vivo in preclinical models of HPV-driven cervical cancer, and that it is the inhibition of Aurora A and B that provides the selectivity and efficacy of this drug in vivo in this disease setting. We also present formal evidence that alisertib requires progression through mitosis for its efficacy, and that it is unlikely to combine with drugs that promote a G2 DNA damage checkpoint response. This work demonstrates that inhibition of Aurora A and B is required for effective control of HPV-driven cancers by Aurora kinase inhibitors.
View less >
Journal Title
Molecular Cancer Therapeutics
Volume
16
Issue
9
Subject
Oncology and Carcinogenesis not elsewhere classified
Oncology and Carcinogenesis
Pharmacology and Pharmaceutical Sciences