Preserving Privacy in Association Rule Mining

View/ Open
Author(s)
Primary Supervisor
Estivill-Castro, Vladimir
Other Supervisors
Topor, Rodney
Year published
2007
Metadata
Show full item recordAbstract
With the development and penetration of data mining within different fields and disciplines, security and privacy concerns have emerged. Data mining technology which reveals patterns in large databases could compromise the information that an individual or an organization regards as private. The aim of privacy-preserving data mining is to find the right balance between maximizing analysis results (that are useful for the common good) and keeping the inferences that disclose private information about organizations or individuals at a minimum. In this thesis we present a new classification for privacy preserving data mining ...
View more >With the development and penetration of data mining within different fields and disciplines, security and privacy concerns have emerged. Data mining technology which reveals patterns in large databases could compromise the information that an individual or an organization regards as private. The aim of privacy-preserving data mining is to find the right balance between maximizing analysis results (that are useful for the common good) and keeping the inferences that disclose private information about organizations or individuals at a minimum. In this thesis we present a new classification for privacy preserving data mining problems, we propose a new heuristic algorithm called the QIBC algorithm that improves the privacy of sensitive knowledge (as itemsets) by blocking more inference channels. We demonstrate the efficiency of the algorithm, we propose two techniques (item count and increasing cardinality) based on item-restriction that hide sensitive itemsets (and we perform experiments to compare the two techniques), we propose an efficient protocol that allows parties to share data in a private way with no restrictions and without loss of accuracy (and we demonstrate the efficiency of the protocol), and we review the literature of software engineering related to the associationrule mining domain and we suggest a list of considerations to achieve better privacy on software.
View less >
View more >With the development and penetration of data mining within different fields and disciplines, security and privacy concerns have emerged. Data mining technology which reveals patterns in large databases could compromise the information that an individual or an organization regards as private. The aim of privacy-preserving data mining is to find the right balance between maximizing analysis results (that are useful for the common good) and keeping the inferences that disclose private information about organizations or individuals at a minimum. In this thesis we present a new classification for privacy preserving data mining problems, we propose a new heuristic algorithm called the QIBC algorithm that improves the privacy of sensitive knowledge (as itemsets) by blocking more inference channels. We demonstrate the efficiency of the algorithm, we propose two techniques (item count and increasing cardinality) based on item-restriction that hide sensitive itemsets (and we perform experiments to compare the two techniques), we propose an efficient protocol that allows parties to share data in a private way with no restrictions and without loss of accuracy (and we demonstrate the efficiency of the protocol), and we review the literature of software engineering related to the associationrule mining domain and we suggest a list of considerations to achieve better privacy on software.
View less >
Thesis Type
Thesis (PhD Doctorate)
Degree Program
Doctor of Philosophy (PhD)
School
School of Information and Communication Technology
Copyright Statement
The author owns the copyright in this thesis, unless stated otherwise.
Item Access Status
Public
Subject
Preserving
Privacy
Security
Association
Data Mining
Rule Mining
Mining
Algorithm
Software