• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Preserving Privacy in Association Rule Mining

    Thumbnail
    View/Open
    02Whole.pdf (3.146Mb)
    Author(s)
    Haj-Yasien, Ahmed
    Primary Supervisor
    Estivill-Castro, Vladimir
    Other Supervisors
    Topor, Rodney
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    With the development and penetration of data mining within different fields and disciplines, security and privacy concerns have emerged. Data mining technology which reveals patterns in large databases could compromise the information that an individual or an organization regards as private. The aim of privacy-preserving data mining is to find the right balance between maximizing analysis results (that are useful for the common good) and keeping the inferences that disclose private information about organizations or individuals at a minimum. In this thesis we present a new classification for privacy preserving data mining ...
    View more >
    With the development and penetration of data mining within different fields and disciplines, security and privacy concerns have emerged. Data mining technology which reveals patterns in large databases could compromise the information that an individual or an organization regards as private. The aim of privacy-preserving data mining is to find the right balance between maximizing analysis results (that are useful for the common good) and keeping the inferences that disclose private information about organizations or individuals at a minimum. In this thesis we present a new classification for privacy preserving data mining problems, we propose a new heuristic algorithm called the QIBC algorithm that improves the privacy of sensitive knowledge (as itemsets) by blocking more inference channels. We demonstrate the efficiency of the algorithm, we propose two techniques (item count and increasing cardinality) based on item-restriction that hide sensitive itemsets (and we perform experiments to compare the two techniques), we propose an efficient protocol that allows parties to share data in a private way with no restrictions and without loss of accuracy (and we demonstrate the efficiency of the protocol), and we review the literature of software engineering related to the associationrule mining domain and we suggest a list of considerations to achieve better privacy on software.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Information and Communication Technology
    DOI
    https://doi.org/10.25904/1912/3325
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Preserving
    Privacy
    Security
    Association
    Data Mining
    Rule Mining
    Mining
    Algorithm
    Software
    Publication URI
    http://hdl.handle.net/10072/365286
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander