• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Production and Characterisation of Nanoscale Structures using Atom Lithographic Techniques

    Thumbnail
    View/Open
    Beardmore_2012_02Thesis.pdf (24.59Mb)
    Author(s)
    Beardmore, Josh
    Primary Supervisor
    Sang, Robert
    Other Supervisors
    Kielpinski, David
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    A metastable neon (Ne) beam generated by a liquid nitrogen cooled, DC discharge source was puried to an atomic beam consisting of a single metastable state. The atomic beam was cooled in the transverse direction by a two dimensional optical collimator, slowed in the longitudinal direction by a novel dual beam Zeeman slower, and then guided through a 30 arc by a hexapole magnetic guide. This resulted in a pure, UV free metastable atomic beam with a ux of (4.41.1)109 atoms s1. The metastable neon atomic beam was used to investigate the patterns formed in resist based atom lithography experiments utilising alkanethiol self-assembled ...
    View more >
    A metastable neon (Ne) beam generated by a liquid nitrogen cooled, DC discharge source was puried to an atomic beam consisting of a single metastable state. The atomic beam was cooled in the transverse direction by a two dimensional optical collimator, slowed in the longitudinal direction by a novel dual beam Zeeman slower, and then guided through a 30 arc by a hexapole magnetic guide. This resulted in a pure, UV free metastable atomic beam with a ux of (4.41.1)109 atoms s1. The metastable neon atomic beam was used to investigate the patterns formed in resist based atom lithography experiments utilising alkanethiol self-assembled monolayer resists. It was observed that very short chain alkanethiols, such as ethanethiol, do not form viable resist layers. They are likely desorbed from the surface during exposure to the metastable beam and replaced by background mechanical pump oil molecules. Above the critical dosage (71014 atoms cm2) these samples react in a manner similar to bare gold samples and form a carbonaceous resist layer. This dosage was found to be signifcantly aected by the vacuum infrastructure, highlighting the role contamination plays in the formation of negative contrast patterns in resist based atom lithography. Using ellipsometry the growth of a carbonaceous lm during exposure to a metastable atomic beam was characterised. The desorption cross-section of carbonaceous material from a silicon surface via Ne impact was determined to be many times larger than the polymerisation cross-section. The values determined, along with simple estimates for the mean residence time, volume, and cross-section of the contaminants involved provide insight for the application of the theory to other metastable atom experimental apparatus. Direct deposition lithography without laser cooling of the atomic beam was achieved and patterning observed for iron atoms with a local average transverse velocity of up to 4 ms1. A broadening of the experimentally deposited samples, from a full width half maximum of 35 nm predicted by simulations to >80 nm on SiOx substrates, was observed. The broadening is attributed to a substrate dependent diusion mechanism and the scattering and interference of the standing wave light mask near the substrate. An initial characterisation of the magnetic properties of co-deposited iron-nickel (Fe-Ni) structures has been conducted using the longitudinal magneto-optic Kerr eect. Variations in the Fe-Ni concentrations infuence the coercivity of the deposited structures. A reduction in the coercive field in regions with line structures was observed when applying a magnetic field parallel to the co-deposited lines. This has been attributed to the nucleation of magnetic domains in regions were the Fe-Ni alloy possesses a lower magnetic moment per atom. A magnetic anisotropy induced by the incident angle of the Ni atomic beam was also observed in regions without nanostructuring.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Biomolecular and Physical Sciences
    DOI
    https://doi.org/10.25904/1912/1984
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Note
    The commercially published journal articles in appendix A have not been published here for copyright reasons.
    Subject
    Metastable neon beam
    Metastable neon atomic beam
    Atom lithographic techniques
    Nanoscale structures
    Publication URI
    http://hdl.handle.net/10072/365326
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander