• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Analysis of Embodied Energy and Carbon in Malaysian Building Construction Using Hybrid Life Cycle Assessment

    Thumbnail
    View/Open
    Wan Omar_2015_02Thesis.pdf (6.110Mb)
    Author(s)
    Wan Omar, Sabki
    Primary Supervisor
    Doh, Jeung-Hwan
    Panuwatwanich, Kriengsak
    Other Supervisors
    Balasubramaniam, Arumugam
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Life cycle assessment (LCA) is considered as the most efficient methodology and has been widely accepted by previous researches in the area of energy analysis. Quantifying embodied energy (EE) and carbon (EC) is time-consuming and needs a lot of quantitative effort to ensure reliability of the data to be obtained and analysed. Hybrid-based LCA (hybrid LCA) is utilised - this incorporates input-output based LCA (I-O LCA) that calculate flow of building materials, products, and construction processes in the whole sector of economy and process-based LCA (process LCA) is used to quantify physical quantities of materials, products, ...
    View more >
    Life cycle assessment (LCA) is considered as the most efficient methodology and has been widely accepted by previous researches in the area of energy analysis. Quantifying embodied energy (EE) and carbon (EC) is time-consuming and needs a lot of quantitative effort to ensure reliability of the data to be obtained and analysed. Hybrid-based LCA (hybrid LCA) is utilised - this incorporates input-output based LCA (I-O LCA) that calculate flow of building materials, products, and construction processes in the whole sector of economy and process-based LCA (process LCA) is used to quantify physical quantities of materials, products, or processes. Although hybrid LCA has been identified as improving completeness of EE and EC inventory data, this benefit was not empirically verified extensively, particularly in the Malaysian building construction industry. Therefore, the principal aim of this research was to develop LCEA methodology in order to systematically quantify EE and EC of building construction in Malaysia.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Engineering
    DOI
    https://doi.org/10.25904/1912/1818
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Note
    This thesis has been scanned
    Subject
    Life cycle assessment (LCA)
    Embodied energy
    Embodied carbon
    Hybrid-based LCA (hybrid LCA)
    Building construction
    Publication URI
    http://hdl.handle.net/10072/365359
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander