• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An ODE/MOL PDE Template For Soil Physics

    Thumbnail
    View/Open
    02Whole.pdf (1.134Mb)
    Author(s)
    Lee, Hock S.
    Primary Supervisor
    Braddock, Roger
    Other Supervisors
    Sander, Graham
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    The aim of the thesis is to find a method, in conjunction with the ordinary differential equation (ODE) based method of lines (MOL) solution of Richards’ equation, to model the steep wetting front infiltration in very dry soils, accurately and efficiently. Due to the steep pressure head or steep water volumetric content gradients, highly nonlinear soil hydraulic properties and the rapid movement of the wetting front, accurate solutions for infiltration into a dry soil are usually difficult to obtain. Additionally, such problems often require very small time steps and large computation times. As an enhancement to the used ...
    View more >
    The aim of the thesis is to find a method, in conjunction with the ordinary differential equation (ODE) based method of lines (MOL) solution of Richards’ equation, to model the steep wetting front infiltration in very dry soils, accurately and efficiently. Due to the steep pressure head or steep water volumetric content gradients, highly nonlinear soil hydraulic properties and the rapid movement of the wetting front, accurate solutions for infiltration into a dry soil are usually difficult to obtain. Additionally, such problems often require very small time steps and large computation times. As an enhancement to the used ODE/MOL approach, Higher Order Finite Differencing, Varying Order Finite Differencing, Vertical Scaling, Adaptive Schemes and Non-uniform Stretching Techniques have been implemented and tested in this thesis. Success has been found in the ability of Vertical Scaling to simulate very steep moving front solution for the Burgers’ equation. Unfortunately, the results also show that Vertical Scaling needs significant research and improvement before their full potential in routine applications for difficult nonlinear problems, such as Richard’s equation with very steep moving front solution, can be realized. However, we have also shown that the use of the composed form of RE and a 2nd order finite differencing for the first order derivative approximation is conducive for modelling steep moving front problem in a very dry soil. Additionally, with the combination of an optimal influx value at the edges of the inlet, the ODE/MOL approach is able to model a 2-D infiltration in very dry soils, effectively and accurately. Furthermore, one of the strengths of this thesis is the use of a MATLAB PDE template. Implementing the ODE/MOL approach via a MATLAB PDE template has shown to be most suitable for modelling of partial differential equations. The plug and play mode of modifying the PDE template for solving time-dependent partial differential equations is user-friendly and easy, as compared to more conventional approaches using Pascal, Fortran, C or C++. The template offers greater modularity, flexibility, versatility, and efficiency for solving PDE problems in both 1-D and 2-D spatial dimensions. Moreover, the 2-D PDE template has been extended for irregular shaped domains.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Australian School of Environmental Studies
    DOI
    https://doi.org/10.25904/1912/740
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Ordinary differential equations
    method of lines
    OLE
    MOL
    MATLAB
    PDE
    PDE template
    soil physics
    soil infiltration
    soil moisture
    Publication URI
    http://hdl.handle.net/10072/365588
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander