• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Rational Design of Nanostructured Earth-Abundant Electrocatalysts for Energy Conversion Applications

    Thumbnail
    View/Open
    Al-Mamun_2016-01Thesis.pdf (17.74Mb)
    Author(s)
    Al-Mamun, M
    Primary Supervisor
    Zhao, Huijun
    Other Supervisors
    Zhang, Haimin
    Wang, Yun
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Electrocatalysis contributes to a huge extent in a large array of research fields and applications, including corrosion science, electroanalytical sensors, wastewater treatment, electro-organic synthesis and more importantly, energy conversion applications. Of the many electrocatalytic processes, the oxygen evolution reaction (OER) and triiodide reduction reaction (IRR) are of widespread importance in electrochemical cells and dye-sensitised solar cells (DSSCs). OER is a key half reaction in electrochemical water splitting, direct solar-to-electricity driven water splitting and metal-air batteries. The high cost of efficient ...
    View more >
    Electrocatalysis contributes to a huge extent in a large array of research fields and applications, including corrosion science, electroanalytical sensors, wastewater treatment, electro-organic synthesis and more importantly, energy conversion applications. Of the many electrocatalytic processes, the oxygen evolution reaction (OER) and triiodide reduction reaction (IRR) are of widespread importance in electrochemical cells and dye-sensitised solar cells (DSSCs). OER is a key half reaction in electrochemical water splitting, direct solar-to-electricity driven water splitting and metal-air batteries. The high cost of efficient benchmark electrocatalysts, such as RuO2 or IrO2, however, is a major drawback of OERs. While, IRR plays a significant role in DSSCs, which must be electrocatalysed at the counter electrode to complete the external circuit in real devices and thereby successfully convert solar energy to electricity. Traditionally, Pt is accepted as an ideal benchmark electrocatalyst for IRR, but its high cost and scarcity limits broad application of DSSCs. Thus, extensive effort has been made to find active alternative electrocatalysts with low-cost, high electrocatalytic activity and excellent stability for OER and IRR to the noble metals (Ru, Ir and Pt). Therefore, a rational design of earth-abundant and low-cost electrocatalysts for OER and IRR maintains a paramount significance for energy conversion applications to meet the constantly growing demand for energy supply.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Environment
    DOI
    https://doi.org/10.25904/1912/1277
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Electrocatalysis
    Energy conversion
    Oxygen evolution reaction (OER)
    Triiodide reduction reaction (IRR)
    dye-sensitised solar cells (DSSCs)
    Nanostructures
    Publication URI
    http://hdl.handle.net/10072/365651
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander