• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development of an Integrated Magnetic System Assisted by Electromagnetic Simulation

    Thumbnail
    View/Open
    Stegen_2012_02Thesis.pdf (3.614Mb)
    Author(s)
    Stegen, Sascha
    Primary Supervisor
    Lu, Junwei
    Other Supervisors
    Thiel, David
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    In DC/DC converter systems, power electronic circuits are reaching switching efficiencies close to 100 percent nowadays. Thus, most of the energy loss appears inside the passive magnetic circuit of the converter, which at the same time is the component that requires most space in the system. In order to battle this issue, research during the last century has been focused on planarization, hybridization and integration techniques with the goal to achieve higher efficiencies and decrease the profile and volume of the devices. In addition, higher frequencies have been applied to achieve a higher power density of the magnetic ...
    View more >
    In DC/DC converter systems, power electronic circuits are reaching switching efficiencies close to 100 percent nowadays. Thus, most of the energy loss appears inside the passive magnetic circuit of the converter, which at the same time is the component that requires most space in the system. In order to battle this issue, research during the last century has been focused on planarization, hybridization and integration techniques with the goal to achieve higher efficiencies and decrease the profile and volume of the devices. In addition, higher frequencies have been applied to achieve a higher power density of the magnetic systems, but with the negative consequence of stronger parasitic effects such as proximity and skin effects inside the magnetic circuit. This thesis deals with the development of an integrated magnetic system in a L-C-T (Inductor-Capacitor-Transformer) configuration, with the assistance of Finite Element Method (FEM) computer modeling, which is supportively used to accelerate the development process. Computational simulation method is used to indicate and address the physical issues, which cannot be identified with conventional measurement methods.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Engineering
    DOI
    https://doi.org/10.25904/1912/3067
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Electronic circuits
    Switching efficiencies
    Inductor-Capacitor-Transformer
    Integrated magnetic system
    Solar Photo Voltaic
    Publication URI
    http://hdl.handle.net/10072/365703
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander