• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Design and Synthesis of 1,3-Disubstitiuted-2-Pyridones as a New Class of Glycogen Phosphorylase Inhibitors

    Thumbnail
    View/Open
    Karis_2009_02Thesis.pdf (14.74Mb)
    Author(s)
    Karis, David
    Primary Supervisor
    Jenkins, Ian
    Loughlin, Wendy
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Glycogen Phosphorylase (GP) is the regulatory enzyme that catalyses the first step in glycogen degradation and is a potential enzyme target for therapeutic intervention in the treatment of diabetes. The 16 amino acid C-terminal sequence of human Gl is the only known targeting subunit that binds to GPa. Blocking the interactions between Gl and GPa should reduce high blood glucose levels in a diabetic person. A segment of the 16 amino acid segment was chosen for a small molecule peptidomimetric approach, and de nova design from this segment identified the pyridone ring as apotential scaffold. This thesis reports the design and ...
    View more >
    Glycogen Phosphorylase (GP) is the regulatory enzyme that catalyses the first step in glycogen degradation and is a potential enzyme target for therapeutic intervention in the treatment of diabetes. The 16 amino acid C-terminal sequence of human Gl is the only known targeting subunit that binds to GPa. Blocking the interactions between Gl and GPa should reduce high blood glucose levels in a diabetic person. A segment of the 16 amino acid segment was chosen for a small molecule peptidomimetric approach, and de nova design from this segment identified the pyridone ring as apotential scaffold. This thesis reports the design and synthesis of 1.3-disubstituted pyridones as new class of GPa inhibitors.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Eskitis Institute for Cell and Molecular Therapies
    DOI
    https://doi.org/10.25904/1912/115
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Note
    This thesi was scanned. The appendix and published articles have not been published.
    Subject
    Glycogen phosphorylase inhibitors
    Glycogen phosphorylase
    Glycogen degradation
    pyridone analogues
    Pyridones
    Publication URI
    http://hdl.handle.net/10072/365791
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander