• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Sputtering and Characterization of C-Axis Oriented Aluminium Nitride Thin Films On Top Of Cubic Silicon Carbide-On-Silicon Substrates for Piezoelectric Applications

    Thumbnail
    View/Open
    Iqbal_2017_01Thesis.pdf (5.498Mb)
    Author(s)
    Iqbal, Abid
    Primary Supervisor
    Mohd-Yasin, Faisal
    Other Supervisors
    Dimitrijev, Sima
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    The growth of micro-scale wireless electronics is increasing significantly because of their miniaturisation and low power consumption. These devices currently draw power from batteries or chemical fuel cells. Their limited life-spans prompt active research to find an alternative solution by harvesting ambient energy from the environment. Numerous sources are available such as solar, thermoelectric, acoustic, and mechanical vibrations. Among them, mechanical vibration is perhaps the most practical to power these wireless electronic devices via piezoelectric transduction. Three most common piezoelectric materials are Lead ...
    View more >
    The growth of micro-scale wireless electronics is increasing significantly because of their miniaturisation and low power consumption. These devices currently draw power from batteries or chemical fuel cells. Their limited life-spans prompt active research to find an alternative solution by harvesting ambient energy from the environment. Numerous sources are available such as solar, thermoelectric, acoustic, and mechanical vibrations. Among them, mechanical vibration is perhaps the most practical to power these wireless electronic devices via piezoelectric transduction. Three most common piezoelectric materials are Lead zirconate titanate (PZT), zinc oxide (ZnO) and aluminum nitride (AlN). AlN is preferred over ZnO and PZT for several reasons. Chiefly among them is because it has the highest electromechanical coupling along the c-axis of wurzite AlN for longitudinal deformation. This thesis investigates the sputtering of c-axis oriented AlN on top of cubic-silicon carbide-on-silicon (3C-SiC-on-Si) substrates for piezoelectric applications. The 3C-SiC buffer layer was used to reduce the lattice mismatch and thermal expansion coefficient between AlN and Si. In the first part of the research, RF sputtering was utilised for depositing AlN. The low growth rate of RF sputtering prompted the switch to DC sputtering. The DC sputtering suffered from electrical arching problems, which were addressed by gradually decreasing the sputtering pressure. However, the system had the limitation of 1200 W of maximum power.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Engineering
    DOI
    https://doi.org/10.25904/1912/1876
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Subject
    Micro-scale wireless electronics
    Aluminium nitride thin films
    Piezoelectric transduction
    Lead zirconate titanate
    Zinc oxide
    Aluminum nitride
    Publication URI
    http://hdl.handle.net/10072/365840
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander