• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Swing Phase Mechanics of Young and Elderly Men: Profiles, Variability & Compensatory Synergies

    Thumbnail
    View/Open
    Mills_2008_02Thesis.pdf (9.446Mb)
    Author(s)
    Mills, Peter
    Primary Supervisor
    Barrett, Rodney
    Other Supervisors
    Morrison, Steven
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    The general purpose of this project was to gain further insight into the effect of ageing on swing phase biomechanics during walking. A particular emphasis was placed on the effect of ageing on the critical gait variables anterior-posterior heel contact velocity (A-P HCV) and minimum toe clearance (MTC). In addition, techniques were developed to i) obtain three-dimensional (3D) joint kinematics from an electromagnetic tracking system (ETS) and ii) quantify a compensatory synergy in a multiple degree-of-freedom (DOF) precision task, namely gait. Intra-trial, intra-day/inter-tester and inter-day/intratester repeatability of ...
    View more >
    The general purpose of this project was to gain further insight into the effect of ageing on swing phase biomechanics during walking. A particular emphasis was placed on the effect of ageing on the critical gait variables anterior-posterior heel contact velocity (A-P HCV) and minimum toe clearance (MTC). In addition, techniques were developed to i) obtain three-dimensional (3D) joint kinematics from an electromagnetic tracking system (ETS) and ii) quantify a compensatory synergy in a multiple degree-of-freedom (DOF) precision task, namely gait. Intra-trial, intra-day/inter-tester and inter-day/intratester repeatability of gait kinematics acquired using the ETS-based technique was equivalent or superior to that obtained using optoelectronic and video based systems. Compared with young participants, the elderly exhibited a greater A-P HCV and greater MTC variability. The postural configuration of the elderly at the time of MTC (timeMTC) was different to that of the young, while no marked differences in joint angle variability at timeMTC were identified. Both the young and elderly were found to exhibit compensatory synergies between kinematic DOFs that acted to minimise MTC variability. The overall strength of these synergies was similar for the young and elderly however the number of DOFs involved in the synergy was less for the elderly than the young. In conclusion, healthy elderly individuals exhibit changes in their walking pattern that may place them a greater risk of a slip and or trip-related fall than their younger counterparts.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Physiotherapy and Exercise Science
    DOI
    https://doi.org/10.25904/1912/1636
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Note
    This thesis was scanned as the original pdf had security settings which prevented me from editing it.
    Subject
    Gait variables
    Biomechanics during walking
    Publication URI
    http://hdl.handle.net/10072/365881
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander