• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Spectroelectrochemical investigation of chalcopyrite leaching

    Thumbnail
    View/Open
    Parker_2006_01Thesis.pdf (4.089Mb)
    Author(s)
    Parker, Gretel
    Primary Supervisor
    Hope, Greg
    Other Supervisors
    Bernhardt, Debra
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    This thesis describes an experimental investigation, utilising primarily spectroelectrochemical techniques, into the mechanism of chalcopyrite leaching and the properties of the metal-deficient product layer. A systematic comparison of the leaching behaviour and products in chloride and sulfate lixiviants was undertaken, and variation of leach conditions was also considered. The product layer distribution, structure and morphology was examined, and various model systems and compounds investigated to aid in identifying the product layer composition and properties. A range of chalcopyrites, and other pertinent sulfide-minerals, ...
    View more >
    This thesis describes an experimental investigation, utilising primarily spectroelectrochemical techniques, into the mechanism of chalcopyrite leaching and the properties of the metal-deficient product layer. A systematic comparison of the leaching behaviour and products in chloride and sulfate lixiviants was undertaken, and variation of leach conditions was also considered. The product layer distribution, structure and morphology was examined, and various model systems and compounds investigated to aid in identifying the product layer composition and properties. A range of chalcopyrites, and other pertinent sulfide-minerals, were investigated. The behaviour of chalcopyrite in both chloride and sulfate electrolytes was investigated in situ and ex situ. Electrochemical experiments demonstrated similar initial behaviour in both chloride and sulfate systems. Potentiostatic techniques combined with normal Raman interrogation of the mineral surface showed much thicker product layers formed on the chalcopyrite leached in chloride electrolytes, over the entire surface. The product layer formed on chalcopyrite leached in chloride solutions consisted of octasulfur and/or a Raman-inactive product phase that could be activated under 442 nm laser irradiation to form polymeric sulfur. The parent phase could not be positively identified but is probably an amorphous metal-deficient remnant lattice on the oxidised mineral surface, which can be restructured under specific conditions to polymeric sulfur. Model compound investigations demonstrated that the induced phase converted to elemental sulfur at ~70°C. Polymeric sulfur was present on leached surfaces even in the absence of laser-inducement but was generally overwhelmed by the octasulfur signal (but identified on samples kept under ultrahigh vacuum conditions). Similar product was rarely observed over the sulfate-leached chalcopyrite surface, as the product layer was too thin to be detectable. However, at 'active' sites (cracks, fissures and grain boundaries) product with a lower ?(SS) Raman shift was encountered, indicating longer sulfur bonds and probably less metal-deficiency. Polysulfides, polysulfanes, jarosite and sulfoxy anions were not detected on acid-leached samples. Model sulfide compounds, and proposed intermediates in chalcopyrite oxidation, were investigated using spectroelectrochemical and neutron reflectometry techniques. The same laser-induced polymeric sulfur phase was identified on high-Fe sphalerite and pyrite surfaces during acid-chloride leaching, though not on covellite surfaces. Sulfoxy anion intermediates were observed on pyrite oxidation in acid solution, confirming a different mechanism to that observed for chalcopyrite oxidation. CuS showed distinctly different spectroelectrochemical behaviour to chalcopyrite and thus is not an intermediate in chalcopyrite oxidation. More aggressive leaching of chalcopyrite was investigated at circumneutral pH. Raman, Environmental Scanning Electron Microscopy (ESEM) and X-ray Photoelectron Spectroscopy (XPS) indicated the presence of highly soluble sulfate salts on the sample surface, though the majority of the product consisted of ferric oxyhydroxides and elemental sulfur. Optical and electron microscopy revealed that the product layer thickness and properties varied as a function of grain orientation. Dynamic Secondary Ion - Mass Spectroscopy (SIMS) and XPS were used to yield elemental composition and valence-state information of oxidation products, and how these varied with depth. Oxidation appeared to be incongruent in the early stages of oxidation, with iron more deficient on the surface than copper. The metal-deficiency extended to some depth (up to hundreds of nanometres) on both chloride and sulfate leached samples. Copper maintained a formal univalent oxidation state on the corroding chalcopyrite surface, while iron was present as ferric ion and sulfur present in oxidation states intermediate between sulfide and elemental sulfur. Submonolayer in situ investigations of chalcopyrite oxidation in acid chloride and sulfate solutions were undertaken via development of a technique to facilitate surface-enhanced Raman scattering (SERS) from the chalcopyrite surface. Both ex situ and in situ investigations were undertaken and showed an amorphous product containing sulfur bonds but distinct from polysulfides, polythionates or elemental sulfur allotropes. The product spectrum was similar in sulfate and chloride solutions, in good agreement with electrochemical observations. Normal Raman and SERS investigations indicate that chalcopyrite oxidation proceeds via a mechanism of cation removal and concomitant oxidation of the remnant sulfide lattice. Sulfur bonding does not appear to commence immediately, and when it does occur, an amorphous structure is formed. This amorphous leached layer is stable for relatively long periods of time at room temperature and extends to some depth. In the case of the chloride, the leached layer ages to sulfur, though of a somewhat amorphous nature that does not volatilise extensively under vacuum. The greater aging of the leached layer on chloride-leached samples is probably facilitated by the ability of copper to leave the lattice as a cuprous complex.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Science
    DOI
    https://doi.org/10.25904/1912/1463
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Chalcopyrite leaching
    spectroelectrochemical techniques
    Raman scattering
    secondary ion-mass spectroscopy
    potentiostatic techniques
    Publication URI
    http://hdl.handle.net/10072/365971
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander