Access Methods for Temporal Databases

View/ Open
Author(s)
Primary Supervisor
Sattar, Abdul
Other Supervisors
Bernus, Peter
Year published
2005
Metadata
Show full item recordAbstract
A Temporal database is one that supports some aspect of time distinct from user defined time. Over the last two decades interest in the field of temporal databases has increased significantly, with contributions from many researchers. However, the lack of efficient access methods is perhaps one of the reasons why commercial RDBMS vendors have been reluctant to adopt the advances in temporal database research. Therefore, an obvious research question is: can we develop more robust and more efficient access methods for temporal databases than the existing ones? This thesis attempts to address this question, and the main ...
View more >A Temporal database is one that supports some aspect of time distinct from user defined time. Over the last two decades interest in the field of temporal databases has increased significantly, with contributions from many researchers. However, the lack of efficient access methods is perhaps one of the reasons why commercial RDBMS vendors have been reluctant to adopt the advances in temporal database research. Therefore, an obvious research question is: can we develop more robust and more efficient access methods for temporal databases than the existing ones? This thesis attempts to address this question, and the main contributions of this study are summarised as follows: We investigated different representations of 'now' and how the modelling of current time influences the efficiency of accessing 'now relative' temporal data. A new method, called the 'Point' approach, is proposed. Our approach not only elegantly models the current time but also significantly outperforms the existing methods. We proposed a new index structure, called a Virtual Binary tree (VB-tree), based on spatial representation of interval data and a regular triangular decomposition of this space. Further, we described a sound and complete query algorithm. The performance of the algorithm is then evaluated both asymptotically and experimentally with respect to the state-of-the-art in the field. We claim that the VB-tree requires less space and uses fewer disk accesses than the currently best known structure - the RI-tree.
View less >
View more >A Temporal database is one that supports some aspect of time distinct from user defined time. Over the last two decades interest in the field of temporal databases has increased significantly, with contributions from many researchers. However, the lack of efficient access methods is perhaps one of the reasons why commercial RDBMS vendors have been reluctant to adopt the advances in temporal database research. Therefore, an obvious research question is: can we develop more robust and more efficient access methods for temporal databases than the existing ones? This thesis attempts to address this question, and the main contributions of this study are summarised as follows: We investigated different representations of 'now' and how the modelling of current time influences the efficiency of accessing 'now relative' temporal data. A new method, called the 'Point' approach, is proposed. Our approach not only elegantly models the current time but also significantly outperforms the existing methods. We proposed a new index structure, called a Virtual Binary tree (VB-tree), based on spatial representation of interval data and a regular triangular decomposition of this space. Further, we described a sound and complete query algorithm. The performance of the algorithm is then evaluated both asymptotically and experimentally with respect to the state-of-the-art in the field. We claim that the VB-tree requires less space and uses fewer disk accesses than the currently best known structure - the RI-tree.
View less >
Thesis Type
Thesis (PhD Doctorate)
Degree Program
Doctor of Philosophy (PhD)
School
School of Information and Communication Technology
Copyright Statement
The author owns the copyright in this thesis, unless stated otherwise.
Item Access Status
Public
Subject
Temporal database
point approach
virtual binary tree
index structure
query algorithm