• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Olfactory Stem Cells From Adult Rats

    Thumbnail
    View/Open
    02Whole.pdf (4.056Mb)
    Author(s)
    Wetzig, Andrew R.
    Primary Supervisor
    Mackay-Sim, Alan
    Other Supervisors
    Feron, Francois
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    The formation of neurospheres was important in demonstrating that neurogenesis in the adult brain may be fuelled by a stem cell population. The olfactory mucosa is another site of neurogenesis which, in humans, has been observed to contain a stem cell population through the formation of neurospheres (Murrell et al., 2005). Stem cells can be defined as cells capable of self-renewal and multipotency. The aim of this study was to investigate the potential of rat olfactory stem cells growing as neurospheres. The hypothesis is that the rat olfactory mucosa contains a 'true' stem cell population that can be cultured as neurospheres ...
    View more >
    The formation of neurospheres was important in demonstrating that neurogenesis in the adult brain may be fuelled by a stem cell population. The olfactory mucosa is another site of neurogenesis which, in humans, has been observed to contain a stem cell population through the formation of neurospheres (Murrell et al., 2005). Stem cells can be defined as cells capable of self-renewal and multipotency. The aim of this study was to investigate the potential of rat olfactory stem cells growing as neurospheres. The hypothesis is that the rat olfactory mucosa contains a 'true' stem cell population that can be cultured as neurospheres and that will demonstrate multipotency by differentiating into 'non-olfactory' cell types and possess the capacity for self-renewal, if provided with the appropriate environmental niche. Here it was found that adult rat olfactory mucosa is capable of generating neurospheres when cultured in EGF and bFGF. Evidence of self-renewal was provided by the formation of six generations of neurospheres, the formation of neurospheres from single cells and the expression of markers associated with self-renewal by neurosphere cells. The multipotency of olfactory neurosphere cells was demonstrated through manipulation of the stem cell niche. In defined culture conditions, extracellular matrix molecules and growth factors were able to induce the differentiation of neurosphere cells down the dopaminergic lineage pathway. When co-cultured with differentiating cells, neonatal myoblasts and 3T3-L1 cells, olfactory neurosphere cells were able to differentiate and incorporate into a skeletal muscle myotube and differentiate into adipocytes, respectively. In conclusion it was found that the adult rat olfactory mucosa is capable of generating neurospheres. When presented with an appropriate niche neurosphere cells are able to self-renew and demonstrate multipotency.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Biomolecular and Biomedical Sciences
    DOI
    https://doi.org/10.25904/1912/907
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Olfactory stem cells
    neurospheres
    neurogenesis
    multipotency
    Publication URI
    http://hdl.handle.net/10072/366121
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander