• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Nitrate Retention and Removal in Sub-Tropical Riparian Zones

    Thumbnail
    View/Open
    Newham_2011_02Thesis.pdf (5.322Mb)
    Author
    Newham, Michael John
    Primary Supervisor
    Fran Sheldon
    Other Supervisors
    Stuart Bunn
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Worldwide, contamination of streams and groundwater with excess nitrate has been linked to agricultural land use and particularly to the application of nitrogen fertilisers to increase agricultural production. Nitrate is an effective contaminant in agricultural areas; it is highly mobile, having a low affinity for soil sorption, and so moves with runoff and sub-surface flows. Excess nitrate can cause ecological impacts on waterways and coastal receiving water through eutrophication and, in some cases, contributes to coastal ‘dead zones’. Nitrate also has toxicological effects on aquatic organisms and those using contaminated ...
    View more >
    Worldwide, contamination of streams and groundwater with excess nitrate has been linked to agricultural land use and particularly to the application of nitrogen fertilisers to increase agricultural production. Nitrate is an effective contaminant in agricultural areas; it is highly mobile, having a low affinity for soil sorption, and so moves with runoff and sub-surface flows. Excess nitrate can cause ecological impacts on waterways and coastal receiving water through eutrophication and, in some cases, contributes to coastal ‘dead zones’. Nitrate also has toxicological effects on aquatic organisms and those using contaminated water as a drinking source. Riparian zones, those zones where interaction of aquatic and terrestrial environments occurs, are identified as areas of intense biogeochemical cycling and can act as buffers against excess nitrate by reducing the amount of nitrate reaching stream channels. Nitrate retention processes of biotic uptake and transformation to less mobile forms can increase the residence time of nitrate within the riparian zone, while removal processes of denitrification can permanently remove nitrate-nitrogen in gaseous forms.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Environment
    Item Access Status
    Public
    Subject
    Nitrate retention in streams
    Riparian nitrate removal
    Riparian zones
    Publication URI
    http://hdl.handle.net/10072/366141
    Collection
    • Theses - Higher Degree by Research

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia