Show simple item record

dc.contributor.advisorAgranovski, Igor
dc.contributor.authorMatsuka, Makien_US
dc.date.accessioned2018-01-23T02:29:17Z
dc.date.available2018-01-23T02:29:17Z
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/10072/366386
dc.description.abstractHydrogen is one of the leading choices for alternative environmentally friendly clean energy sources and there is an increasing worldwide interest in the hydrogen economy and hydrogen technologies. One of the main technical challenges presently faced in the production of hydrogen is the cost of purification or the separation of hydrogen from gas mixtures. Non-galvanic hydrogen separation by dense ceramic membranes with mixed protonic–electronic conduction seems to be one of the most promising technologies for hydrogen separation for environmentally friendly energy. There are several issues associated with the applications of dense ceramic membranes for (non-galvanic) hydrogen separation, for example, impractical hydrogen separation rates, the stability of the materials, and the shortages of experimental data and theoretical models of hydrogen permeation for those membranes. The present project has undertaken the following investigations:  Analysis of a currently available model for non-galvanic hydrogen permeation of the membranes;  Development of a method for fabrication of asymmetric dense membranes to improve the filling technique to aid the conventional dry pressing, to develop a simple, cost-effective and highly reproducible method to prepare thin dense membranes;  Study of material stability in a reducing atmosphere to confirm the effect of hydrogen on the phase stability of commonly reported perovskite type material;  Investigation of non-galvanic hydrogen permeation data for dense perovskite type membranes in both dry and wet hydrogen; and  Comparison of the experimental results with the model predictions. This project demonstrated that the settlement method is an effective filling technique which aids the conventional dry pressing, in order to prepare a thin uniform layer on a porous support. The method can provide advantages such as ease of control of the membrane thickness. The settlement methods can also be applied to prepare a thin uniform nano porous layer on a porous support, which can possibly be utilised as a molecular sieve type membrane for hydrogen separations from syngas. The phase stability study confirmed that some of the perovskite phase of the SrCe0.95Yb0.05O3-α decomposed to cerium oxide under strongly reducing conditions such as in dry hydrogen at 900 ○C. It was interesting to find that the extent of decomposition of the perovskite phase in a reducing condition was most influenced by the status of the SrCe0.95Yb0.05O3-α sample (i.e. either disk or powder form) while the temperature or the extent of the reducing atmosphere produced a smaller effect. The finding indicated that relaxation kinetics may play an important role in the phase stability of perovskite materials, and that it is vital to conduct hydrogen permeation tests using a ‘wet’ hydrogen atmosphere, in order to avoid strongly reducing conditions.en_US
dc.languageEnglishen_US
dc.publisherGriffith Universityen_US
dc.publisher.placeBrisbaneen_US
dc.rights.copyrightThe author owns the copyright in this thesis, unless stated otherwise.en_US
dc.subject.keywordsHydrogen as energy sourceen_US
dc.subject.keywordsNon-galvanic hydrogen permeationen_US
dc.subject.keywordsNon-galvanic hydrogen separationen_US
dc.titleExperimental and Theoretical Studies of Non-Galvanic Hydrogen Separations Using Doped-Strontium Cerates for Application in Clean Energy Productionen_US
dc.typeGriffith thesisen_US
gro.facultyScience, Environment, Engineering and Technologyen_US
gro.description.notepublicThird party copyright has been identified as Figures; 2.1,2.2,2.5,2.7,2.8,2.10,2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22.en_US
gro.rights.copyrightThe author owns the copyright in this thesis, unless stated otherwise.
gro.hasfulltextFull Text
dc.contributor.otheradvisorBraddock, Roger
dc.rights.accessRightsPublicen_US
gro.identifier.gurtIDgu1325558615164en_US
gro.source.ADTshelfnoADT0en_US
gro.source.GURTshelfnoGURT1103en_US
gro.thesis.degreelevelThesis (PhD Doctorate)en_US
gro.thesis.degreeprogramDoctor of Philosophy (PhD)en_US
gro.departmentGriffith School of Engineeringen_US
gro.griffith.authorMatsuka, Maki


Files in this item

This item appears in the following Collection(s)

Show simple item record