• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Low Energy Collision Induced Vibrational Relaxation in B3II+ou Iodine

    Thumbnail
    View/Open
    Rock_1996_01Thesis.pdf (46.37Mb)
    Author(s)
    Rock, Andrew Boyd
    Primary Supervisor
    Knight, Alan
    Other Supervisors
    Van Zoeren, Carol
    Scott, Kable
    Edwards, Geoff
    Holdsworth, John
    Year published
    1996
    Metadata
    Show full item record
    Abstract
    Understanding energy transfer processes is an essential prerequisite for the deep understanding of all chemical processes. This thesis investigates the process of vibrational relaxation (or deexcitation) of highly vibrationally and electronically excited molecular iodine (I2) induced by very low energy collisions in a supersonic free jet with six foreign gases. In an investigation of the state-to-field relaxation of I2 (B 3II+ou, v = 16) induced by collisions with He at temperatures of 2 to 12 K we find that the absolute relaxation rates are an order of magnitude smaller than those at 300 K and that the explanation of the ...
    View more >
    Understanding energy transfer processes is an essential prerequisite for the deep understanding of all chemical processes. This thesis investigates the process of vibrational relaxation (or deexcitation) of highly vibrationally and electronically excited molecular iodine (I2) induced by very low energy collisions in a supersonic free jet with six foreign gases. In an investigation of the state-to-field relaxation of I2 (B 3II+ou, v = 16) induced by collisions with He at temperatures of 2 to 12 K we find that the absolute relaxation rates are an order of magnitude smaller than those at 300 K and that the explanation of the magnitudes of these rates does not require enhancement due to low energy orbiting resonances. We find that the rates scale well with estimated collision encounter rates that account for the attractive part of the intermolecular potential. A second investigation with a much wider scope explores vibrational relaxation from v = 21 to 24 with six foreign gases: He, Ne, Ar, H2, D2 and N2. For this investigation a new type of experimental procedure has been designed and implemented that records a detailed and complete map of the fluorescence from B3II+ouI2 that is resolved with respect to both fluorescence frequency and time. These not only yield state-to-field rates, but coupled with a novel deconvolution method for growth curve fitting, yield absolute state-to-state rates for vibrational relaxation processes with Av=-1, -2, -3 and -4. The dependence of the relaxation rates on the collision partner, temperature and Av are discussed. An exponential dependence on the vibrational energy gap may be adequate to characterise the Av dependence of vibrational relaxation. The frequency resolution of the experimental data also reveals that some of the energy released by vibrational de-excitation is transferred to the rotation of the I2 molecule. We find this process is best characterised by an exponential dependence on the change of I2 angular momentum and that its extent scales with the mass of the collision partner. Measurements of the low-energy collision-induced quenching of B 3II+ouI2 are also reported for all six foreign gases. The possibility arises from the rates that the mechanism for quenching by H2 and D2 at low temperatures is different to that of the other gases and to that for H2 and D2 at high temperatures.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Science
    DOI
    https://doi.org/10.25904/1912/462
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Subject
    Energy transfer
    Collision spectroscopy
    Iodine
    Chemical processes
    Publication URI
    http://hdl.handle.net/10072/366393
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander