• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • On Sparse Point Representation for Face Localisation and Recognition

    Thumbnail
    View/Open
    Zhao_2009_02Thesis.pdf (4.037Mb)
    Author(s)
    Zhao, Sanqiang
    Primary Supervisor
    Gao, Yongsheng
    Other Supervisors
    Thiel, David
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    Automatic face recognition has been an active research field during the last few decades. Existing face recognition systems have demonstrated acceptable recognition performance under controlled conditions. However, practical and robust face recognition which is tolerant to various interferential variations remains a difficult and unsolved problem in the research community. In the first part of this thesis, we propose to use the concept of sparse point representation to address four important challenges in face recognition: wider-range tolerance to pose variation, face misalignment, facial landmark localisation and head pose ...
    View more >
    Automatic face recognition has been an active research field during the last few decades. Existing face recognition systems have demonstrated acceptable recognition performance under controlled conditions. However, practical and robust face recognition which is tolerant to various interferential variations remains a difficult and unsolved problem in the research community. In the first part of this thesis, we propose to use the concept of sparse point representation to address four important challenges in face recognition: wider-range tolerance to pose variation, face misalignment, facial landmark localisation and head pose estimation. The sparse point representation can be classified into two different categories. In the first category, equal numbers of feature points are predefined on different individuals. Each feature point refers to a specific physical location on a face while all the feature points have explicit correspondence across different individuals. In the second category, a set of feature points are detected at different locations with discriminative information content on a face image. Both the number and the positions of the feature points are varied from person to person such that diverse facial characteristics of different individuals can be represented. Based on the first category of sparse point representation, we propose a new Constrained Profile Model (CPM) to form an efficient facial landmark localisation framework. We also propose a novel Elastic Energy Model (EEM) to automatically conduct head pose estimation. Based on the second category of sparse point representation, we propose a new Textural Hausdorff Distance (THD), which has demonstrated a considerably wider range of tolerance against both in-depth head rotation and face misalignment. In the second part of this thesis, we focus on recently proposed micropattern based approaches which have proven to outperform classical face recognition methods and provided a new way of investigation into face analysis. We first apply a new Multidirectional Binary Pattern (MBP) representation upon sparse points to establish point correspondences for face recognition. We further propose an enhanced Sobel-LBP operator for face representation, which has demonstrated better performance than the original Local Binary Pattern (LBP). We finally present a novel high-order Local Derivative Pattern (LDP) for face recognition, which can capture more detailed and discriminative information than the first-order local pattern used in LBP. It should be noted that the concept of LDP for face recognition was pioneered by Dr. Baochang Zhang, but we have significantly extended and elaborated this concept. We have extended the concept of LDP from its original usage on Gabor phase features only to much more generalised definition on gray-level images. We have rewritten and enlarged the original draft of his manuscript. Some of the experiments were also implemented and reported by us. In the third part of this thesis, we pay attention to the representation of 'Average Face', which was newly published on Science and claimed to be capable of dramatically improving performance of face recognition systems. To reveal its working mechanism, we conduct a comparative study to observe its effectiveness on holistic and local face recognition approaches. Our experimental results reveal that the process of face averaging does not necessarily improve all the face recognition systems. Its usefulness is dependent on the specific methods employed in practice.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Engineering
    DOI
    https://doi.org/10.25904/1912/1572
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Automatic face recognition
    Face recognition systems
    Pose variation
    Face misalignment
    Facial landmark localisation
    Head pose estimation
    Multidirectional binary pattern
    Publication URI
    http://hdl.handle.net/10072/366629
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander