• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Assessment and Improvement of CLIGEN for Climate Change Impact Analysis in Australia

    Thumbnail
    View/Open
    Vaghefi, Parshin_Thesis_redacted.pdf (4.197Mb)
    Author(s)
    Vaghefi, Parshin
    Primary Supervisor
    Yu, Bofu
    Other Supervisors
    Zhang, Hong
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Climate change is a complex phenomenon and can have considerable impact on hydrological and bio-physical systems as well as the society. To evaluate the impact of climate change, stochastic weather generators (SWG) are commonly used to produce synthetic weather sequences that are statistically similar to the observed weather data, and these SWGs have been widely used for downscaling global climate model (GCM) outputs. CLIGEN is one such weather generator that has been used for impact analysis. As a unique SWG, CLIGEN can produce variables describing storm patterns, including time to peak, peak intensity, and storm duration, ...
    View more >
    Climate change is a complex phenomenon and can have considerable impact on hydrological and bio-physical systems as well as the society. To evaluate the impact of climate change, stochastic weather generators (SWG) are commonly used to produce synthetic weather sequences that are statistically similar to the observed weather data, and these SWGs have been widely used for downscaling global climate model (GCM) outputs. CLIGEN is one such weather generator that has been used for impact analysis. As a unique SWG, CLIGEN can produce variables describing storm patterns, including time to peak, peak intensity, and storm duration, in addition to precipitation amount and other daily weather variables. CLIGEN has been used for WEPP (Water Erosion Prediction Project) to predict runoff, soil erosion, and crop production. Although in recent years several research papers have been published to evaluate approaches that adjust CLIGEN parameters to simulate non-stationary climate change scenarios using observed data prior researches was limited to use simple approaches, e.g. multiplying the CLIGEN-generated daily precipitation by a fixed factor. The main goal of this research was to develop methodologies to adjust precipitation related parameters of CLIGEN for climate change impact analysis in two regions of Australia. On a broader scale, this research has three objectives: 1. To adjust relevant CLIGEN parameters when annual precipitation has changed abruptly and significantly; 2. To adjust relevant CLIGEN parameters when there is a significantly decreasing trend in annual precipitation; and 3. To validate the adjustment method in terms of simulated streamflow using conceptual hydrological models.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Engineering
    DOI
    https://doi.org/10.25904/1912/3333
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Subject
    Stochastic weather generators
    CLIGEN
    Global climate model
    Climate change analysis
    Publication URI
    http://hdl.handle.net/10072/366770
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander