• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Piezoresistive Effect of p-type Single Crystalline 3C-SiC for Mechanical Sensors

    Thumbnail
    View/Open
    Phan_2016_01Thesis.pdf (13.27Mb)
    Author(s)
    Phan, Hoang Phuong
    Primary Supervisor
    Dao, Dzung
    Nguyen, Nam-Trung
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Silicon carbide (SiC) is a promising material for electronic devices operating at high temperatures, thanks to its large energy band gap, superior mechanical prop- erties and excellent chemical inertness. Among various poly types of SiC, cubic single crystalline silicon carbide (3C-SiC) is considered to be the most suitable poly type for MEMS applications, as it can be grown on a Si substrate which is com- patible with the conventional MEMS process and reduces the cost of SiC wafers. Studies on the piezoresistive effect of 3C-SiC are of great interest for developing mechanical sensors such as pressure sensors and strain ...
    View more >
    Silicon carbide (SiC) is a promising material for electronic devices operating at high temperatures, thanks to its large energy band gap, superior mechanical prop- erties and excellent chemical inertness. Among various poly types of SiC, cubic single crystalline silicon carbide (3C-SiC) is considered to be the most suitable poly type for MEMS applications, as it can be grown on a Si substrate which is com- patible with the conventional MEMS process and reduces the cost of SiC wafers. Studies on the piezoresistive effect of 3C-SiC are of great interest for developing mechanical sensors such as pressure sensors and strain sensors used for controlling combustion and deep well drilling. This research aims to experimentally charac- terize and theoretically analyze the piezoresistive effect of p-type single crystalline 3C-SiC grown on a large scale Si substrate. The gauge factor, the piezoresistive coefficients in two-terminal and four-terminal resistors, the comparison between single crystalline and nano crystalline SiC, as well as the temperature dependence of the piezoresistive effect in p-type 3C-SiC are also addressed. The large gauge factors of the p-type 3C-SiC at both room temperature and high temperatures found in this study indicated that this poly type is feasible for the development of mechanical sensing transducers used in harsh environments with high temperatures.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Engineering
    DOI
    https://doi.org/10.25904/1912/1139
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Silicon carbide (SiC)
    Mechanical sensors
    MEMS applications
    Piezoresistive coefficients
    Publication URI
    http://hdl.handle.net/10072/366955
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander