• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Incremental / Online Learning and its Application to Handwritten Character Recognition

    Thumbnail
    View/Open
    Kunwar_2017_01Thesis.pdf (1.110Mb)
    Author
    Kunwar, Rituraj
    Primary Supervisor
    Michael Blumenstein
    Other Supervisors
    Alan Liew
    Umapada Pal
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    In real world scenarios where we use machine learning algorithms, we often have to deal with cases where input data changes its nature with time. In order to maintain the accuracy of the learning algorithm, we frequently have to retrain our learning system, thereby making the system inconvenient and unreliable. This problem can be solved by using learning algorithms which can learn continuously with time (incremental/ online learning). Another common problem of real-world learning scenarios that we often have to deal with is acquiring large amounts of data which is expensive and time consuming. Semi-supervised learning is ...
    View more >
    In real world scenarios where we use machine learning algorithms, we often have to deal with cases where input data changes its nature with time. In order to maintain the accuracy of the learning algorithm, we frequently have to retrain our learning system, thereby making the system inconvenient and unreliable. This problem can be solved by using learning algorithms which can learn continuously with time (incremental/ online learning). Another common problem of real-world learning scenarios that we often have to deal with is acquiring large amounts of data which is expensive and time consuming. Semi-supervised learning is the machine learning paradigm concerned with utilizing unlabeled data to improve the precision of classifier or regressor. Unlabeled data is a powerful and easily available resource and it should be utilized to build an accurate learning system. It has often been observed that there is a vast amount of redundancy in any huge, real-time database and it is not advisable to process every redundant sample to gain the same (already acquired) knowledge. Active learning is the learning setting which can handle this issue. Therefore in this research we propose an online semi-supervised learning framework which can learn actively. We have proposed an "online semi-supervised Random Naive Bayes (RNB)" classifier and as the name implies it can learn in an online manner and make use of both labeled and unlabeled data to learn. In order to boost accuracy we improved the network structure of NB (using Bayes net) to propose an Augmented Naive Bayes (ANB) classifier and achieved a substantial jump in accuracy. In order to reduce the processing of redundant data and achieve faster convergence of learning, we proposed to conduct incremental semi-supervised learning in active manner. We applied the proposed methods on the "Tamil script handwritten character recognition" problem and have obtained favorable results. Experimental results prove that our proposed online classifiers does as well as and sometimes better than its batch learning counterpart. And active learning helps to achieve learning convergence with much less number of samples.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Information and Communication Technology
    Item Access Status
    Public
    Subject
    Character recognition
    Online learning
    Learning algorithm
    Augmented Naive Bayes (ANB)
    Tamil script
    Publication URI
    http://hdl.handle.net/10072/366964
    Collection
    • Theses - Higher Degree by Research

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia