• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Genetic Aberrations in Non-Melanoma Skin Cancer

    Thumbnail
    View/Open
    Ashton_2017_01Thesis.pdf (12.19Mb)
    Author(s)
    Ashton, Kevin John
    Primary Supervisor
    Griffiths, Lyn
    Other Supervisors
    Gray, Joe
    Year published
    2002
    Metadata
    Show full item record
    Abstract
    Genetic changes are hallmarks of cancer development involving the activation and/or inactivation of oncogenes and tumour suppressor genes, respectively. In non-melanoma skin cancer (NMSC) development, the initiation of genetic mutations results from exposure to solar ultraviolet radiation. Non-melanoma skin cancers are comprised of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Several related cutaneous lesions also exist, of which solar keratoses (SK) are widely accepted as a precursor dysplasia to SCC development. The study of recurrent genetic changes present within NMSC and SK should help reveal causative ...
    View more >
    Genetic changes are hallmarks of cancer development involving the activation and/or inactivation of oncogenes and tumour suppressor genes, respectively. In non-melanoma skin cancer (NMSC) development, the initiation of genetic mutations results from exposure to solar ultraviolet radiation. Non-melanoma skin cancers are comprised of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Several related cutaneous lesions also exist, of which solar keratoses (SK) are widely accepted as a precursor dysplasia to SCC development. The study of recurrent genetic changes present within NMSC and SK should help reveal causative mutations in skin cancer development. Such analysis could also elucidate links in the genetic similarity of these dysplasia. The rapid screening of numerical changes in DNA sequence copy number throughout the entire genome has been made possible by the advent of comparative genomic hybridisation (CGH). This technique enables the identification of net gains and loss of genetic material within a tumour DNA sample. Chromosomal regions of recurrent gain or loss identify loci containing putative oncogenes and tumour suppressor genes, respectively with potential roles in NMSC tumourigenesis. Used in conjunction with tissue microdissection and universal degenerate PCR techniques this can enable the elucidation of aberrations in small histologically distinct regions of tumour. Such a technique can utilize archival material such as paraffin embedded tissue, which is the major source of neoplastic material available for cancer research. This study used the CGH technique to investigate aberrations in BCC, SCC and SK samples. The screening of copy number abnormalities (CNAs) in BCC revealed that although these tumours were close to diploid and generally genetically stable, they did contain several recurrent aberrations. The loss of genetic material at 9q was identified in a third of BCC tumours studied. This is characteristic of inactivation of the PTCH tumour suppressor gene, a known attribute in some sporadic BCC development. Validation of this loss was performed via loss of heterozygosity, demonstrating good concordance with the CGH data. In addition the over-representation of the 6p chromosome arm was revealed in 47% of biopsies. This novel CNA is also commonly observed in other cutaneous neoplasias, including Merkel cell carcinoma and malignant melanoma. This suggests a possible common mechanism in development and or promotion in these cutaneous dysplasias, the mechanisms of which have yet to be clearly defined. In contrast to BCC, numerical genetic aberrations in SCC and SK were much more frequent. Several regions of recurrent gain were commonly shared between both dysplasias including gain of 3q, 4p, 5p, 8q, 9q, 14q, 17p, 17q and 20q. Common chromosomal regions of loss included 3p, 8p, 9p, 11p, 13q and 17p. In addition loss of chromosome 18 was significantly observed in SCC in comparison to SK, a possible defining event in SK progression to SCC. The identification of shared genetic aberrations suggests a clonal and genetic relationship between the two lesions. This information further supports the notion for re-classification of SK to an SCC in situ or superficial SCC. Finally, the CNAs detected have been similarly observed in other squamous cell-derived tumours, for example cervical and head and neck SCC. This provides further evidence to common mechanisms involved in the initiation, development and progression of SCC neoplasia. This study has identified a number of recurrent chromosomal regions, some of which are novel in NMSC development. The further delineation of these loci should provide additional evidence of their significance and degree of involvement in NMSC tumourigenesis. The identification of the cancer-causing genes mapped to these loci will further demarcate the genetic mechanisms of BCC and SCC progression. An understanding of the events involved in skin cancer formation and progression should shed additional light on molecular targets for diagnostics, management and therapeutic treatment.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Health Sciences
    DOI
    https://doi.org/10.25904/1912/1901
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Subject
    Non-melanoma skin cancer
    Basal cell carcinoma
    Squamous cell carcinoma
    Solar keratosis
    Actinic keratosis
    Comparative genomic hybridization
    Chromosomal abnormalities
    Publication URI
    http://hdl.handle.net/10072/367012
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander