• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Electrokinetic Treatment of Fine-grained Soils with Chemical Enhancement Solutions

    Thumbnail
    View/Open
    Mosavat_2014_02Thesis.pdf (4.102Mb)
    Author(s)
    Mosavat, Nasim
    Primary Supervisor
    Oh, Erwin
    Other Supervisors
    Chai, Gary
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    The electrokinetic (EK) soil treatment method is a comparatively new technology. It is being investigated in some parts of the world as a feasible and practical in-situ soil remediation and treatment method. When the application of traditional ground improvement techniques (e.g. surcharge, preloading, etc) is not practical for a particular situation, innovative approaches such as EK technique can be considered. The principles of the EK treatment method involve applying a low direct current (DC) or a low potential gradient to arrays of electrodes inserted in the low permeable soils that cannot readily drained. The EK method ...
    View more >
    The electrokinetic (EK) soil treatment method is a comparatively new technology. It is being investigated in some parts of the world as a feasible and practical in-situ soil remediation and treatment method. When the application of traditional ground improvement techniques (e.g. surcharge, preloading, etc) is not practical for a particular situation, innovative approaches such as EK technique can be considered. The principles of the EK treatment method involve applying a low direct current (DC) or a low potential gradient to arrays of electrodes inserted in the low permeable soils that cannot readily drained. The EK method is applicable to fine- grained soils such as clays, silty clays and clayey silts, possessing specific mineralogical properties, which are electrically and chemically active. When a DC electric potential is applied to the soil, it simulates migration of electricity, pore water, ions and charged particles across the soil, creating several complex mechanisms such as electrolysis, electro-osmosis, electromigration and electrophoresis, respectively. This technique can also be incorporated/ enhanced by introducing desirable non-toxic chemical stabilisers such as lime or saline solutions to the soil at the appropriate electrode. The combined effects of these processes together with various geochemical reactions alter the chemical composition of the soil porous medium and hence modify the physicochemical, mechanical and engineering properties of the soil. Although the EK technology has been proven to be applicable in many laboratory bench scale experiments and field tests, some complicated features such as electrochemical reactions and changes in soil properties are not fully understood. Therefore, there is a need to conduct this research for a better understanding of the improvements in problematic soils and the efficiency of this technology.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Engineering
    DOI
    https://doi.org/10.25904/1912/788
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Electrokinetic (EK) soil treatment
    Fine-grained soils
    Chemical enhancement solutions for soils
    Soils
    Publication URI
    http://hdl.handle.net/10072/367245
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander