Dryland Channel Forms and Processes: A Whole Catchment Scale Study of the Diamantina River, Central Australia

View/ Open
Author(s)
Primary Supervisor
McTainsh, Grant
Other Supervisors
Bullard, Joanna
Year published
2013
Metadata
Show full item recordAbstract
Many aspects of dryland river research, such as channel forms and processes, remain poorly investigated at the catchment scale because of the practical difficulties and costs of carrying out fieldwork in remote dryland regions. Remote sensing techniques, including Shuttle Radar Topography Mission (SRTM) data, and modelling are partly overcoming these difficulties. This study has used fieldwork, remote sensing and computational modelling to investigate channel forms and processes along the Diamantina River at the catchment scale, a large dryland river in the Lake Eyre Basin, Australia. It focuses on comparing the fluvial ...
View more >Many aspects of dryland river research, such as channel forms and processes, remain poorly investigated at the catchment scale because of the practical difficulties and costs of carrying out fieldwork in remote dryland regions. Remote sensing techniques, including Shuttle Radar Topography Mission (SRTM) data, and modelling are partly overcoming these difficulties. This study has used fieldwork, remote sensing and computational modelling to investigate channel forms and processes along the Diamantina River at the catchment scale, a large dryland river in the Lake Eyre Basin, Australia. It focuses on comparing the fluvial morphology and hydrological characteristics associated with selected (dominant) channel forms with the primary anastomosing, meandering, anabranch and braided channel forms of the Diamantina River receiving particular attention. The Diamantina River is comprised of a channelised inner floodplain (IFP), bounded by a non-channelised outer floodplain (OFP). Channel forms within the IFP were found to be significantly different in terms of their; sediment size, cross-sectional geometry, and channel form pattern both laterally and in the downstream direction.
View less >
View more >Many aspects of dryland river research, such as channel forms and processes, remain poorly investigated at the catchment scale because of the practical difficulties and costs of carrying out fieldwork in remote dryland regions. Remote sensing techniques, including Shuttle Radar Topography Mission (SRTM) data, and modelling are partly overcoming these difficulties. This study has used fieldwork, remote sensing and computational modelling to investigate channel forms and processes along the Diamantina River at the catchment scale, a large dryland river in the Lake Eyre Basin, Australia. It focuses on comparing the fluvial morphology and hydrological characteristics associated with selected (dominant) channel forms with the primary anastomosing, meandering, anabranch and braided channel forms of the Diamantina River receiving particular attention. The Diamantina River is comprised of a channelised inner floodplain (IFP), bounded by a non-channelised outer floodplain (OFP). Channel forms within the IFP were found to be significantly different in terms of their; sediment size, cross-sectional geometry, and channel form pattern both laterally and in the downstream direction.
View less >
Thesis Type
Thesis (PhD Doctorate)
Degree Program
Doctor of Philosophy (PhD)
School
Griffith School of Environment
Copyright Statement
The author owns the copyright in this thesis, unless stated otherwise.
Item Access Status
Public
Subject
Diamantina River, Central Australia
Dryland river research
Shuttle Radar Topography Mission (SRTM) data
Channelised inner floodplain (IFP)
Channelised outer floodplain (OFP)
Lake Eyre Basin, Central Australia