• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Development of Affinity-Based Chemical Probes for Fluorescence Detection of Human Carbonic Anhydrases

    Thumbnail
    View/Open
    Teruya,Kanae Final Thesis_Redacted.pdf (9.089Mb)
    Author(s)
    Teruya, Kanae
    Primary Supervisor
    Poulsen, Sally-Ann
    Tonissen, Kathryn
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    The development of small molecule affinity-based chemical probes as research tools for studying the role of carbonic anhydrases (CAs) in their wider biological context has become an active field of research owing to an increasing awareness of the therapeutic relevance of this enzyme family, particularly in diseases such as glaucoma (CA II) and solid tumors (CA IX, CA XII). High CA isozyme selectivity, low nonspecific labeling, and efficient labeling yield are the characteristics of an ideal chemical probe, however achieving an effective balance of all three properties is challenging. A panel of chemical probes for two-step ...
    View more >
    The development of small molecule affinity-based chemical probes as research tools for studying the role of carbonic anhydrases (CAs) in their wider biological context has become an active field of research owing to an increasing awareness of the therapeutic relevance of this enzyme family, particularly in diseases such as glaucoma (CA II) and solid tumors (CA IX, CA XII). High CA isozyme selectivity, low nonspecific labeling, and efficient labeling yield are the characteristics of an ideal chemical probe, however achieving an effective balance of all three properties is challenging. A panel of chemical probes for two-step labeling of CA II or CA IX has been designed to study the impact of probe structural features on the efficiency and specificity of CA-selective labeling when in a challenging environment, including protein mixtures, cell lysates, or live cells. The panel comprised Generation 1 probes (P1 and novel probes P2–P5), Generation 2 linear PAL probes (P6 and novel probes P7–P15), and Generation 3 branched PAL probes (novel probes P16–P20).
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Natural Sciences
    DOI
    https://doi.org/10.25904/1912/861
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Subject
    Carbonic anhydrases
    Affinity-based chemical probes
    Fluorescence detection
    Publication URI
    http://hdl.handle.net/10072/367357
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander