• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Plasmodium Falciparum Histone Deacetylases as Novel Antimalarial Drug Targets

    Thumbnail
    View/Open
    TranThanh_2010_02Thesis.pdf (3.750Mb)
    Author(s)
    Tran, Thanh
    Primary Supervisor
    Andrews, Kathy
    Other Supervisors
    Gardiner, Donald
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Histone deacetylases (HDACs) are recognised as potential drug targets for many diseases including cancer, inflammatory diseases and some parasitic diseases including malaria. In eukaryotic cells, these enzymes play an important role in transcriptional regulation through modification of chromatin structure. Inhibitors of mammalian HDAC enzymes including trichostain A and apicidin are active against P. falciparum parasites, however these compounds are not selective for malaria parasites versus normal cell lines. The aims of this study were to examine the antimalarial potential of new hydroxamate-based HDAC inhibitors and to ...
    View more >
    Histone deacetylases (HDACs) are recognised as potential drug targets for many diseases including cancer, inflammatory diseases and some parasitic diseases including malaria. In eukaryotic cells, these enzymes play an important role in transcriptional regulation through modification of chromatin structure. Inhibitors of mammalian HDAC enzymes including trichostain A and apicidin are active against P. falciparum parasites, however these compounds are not selective for malaria parasites versus normal cell lines. The aims of this study were to examine the antimalarial potential of new hydroxamate-based HDAC inhibitors and to investigate a P. falciparum HDAC, PfHDAC1, as a potential new antimalarial drug target.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Health Science
    DOI
    https://doi.org/10.25904/1912/2472
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Note
    Journal articles have not been published here.
    Subject
    Histone deacetylases
    Eukaryotic cells
    Inflammatory diseases
    Mammalian HDAC enzymes
    Publication URI
    http://hdl.handle.net/10072/367456
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander