• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Chemical investigations of Natural Products from Australian Marine Sponge-Derived Fungi

    Thumbnail
    View/Open
    Li_2007_02Thesis.pdf (5.671Mb)
    Author(s)
    Li, Hang
    Primary Supervisor
    Quinn, Ronald
    Other Supervisors
    Buchanan, Malcolm
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    This thesis described the chemical investigations of natural products from Australian marine sponge-derived fungi. Sponge samples were collected from the Great Barrier Reef, Queensland, Australia, by Queensland Museum. The thesis is divided into eight chapters and can be devided into two major parts. The first three chapters comprised the first part of the thesis: Chapter 1 outlined the research background, literature review of marine fungal secondary metabolites; Chapter 2 introduced fungal culture and storage background knowledge, and the list of isolated marine fungal strains. Chapter 3 introduced the background of the ...
    View more >
    This thesis described the chemical investigations of natural products from Australian marine sponge-derived fungi. Sponge samples were collected from the Great Barrier Reef, Queensland, Australia, by Queensland Museum. The thesis is divided into eight chapters and can be devided into two major parts. The first three chapters comprised the first part of the thesis: Chapter 1 outlined the research background, literature review of marine fungal secondary metabolites; Chapter 2 introduced fungal culture and storage background knowledge, and the list of isolated marine fungal strains. Chapter 3 introduced the background of the thrombin inhibition assay and assay results. The second part (Chapter 4 to 7) of this thesis is focused on chemical isolation and structure elucidation of secondary metabolites from isolated fungal strains, mostly active strains against thrombin. An unidentified fungal strain, FS-G315858 (T)-Y, isolated from the frozen sponge sample Dysidea sp.1400 produced five peptide compounds (chapter 4, 16-20). Compound 16 is a polypeptide which features the same relative configuration with a known compound unguisine A, and compounds 17-20 are diketopiperazines. Active fungal strains FS-G315695 (T)-Y and FDPS-61732-YB were isolated from different sponge samples. However, they were identified to be the identical fungal strain Eurotium rubrum; the chemical isolation of FS-G315695 (T)-Y from its mycelia EtOAc extract resulted in three compounds (chapter 5, 17-19). Compounds 18 and 19 were identified to be flavoglaucin and iso-dihydroauroglaucin. Compound 17 was identified to have the same relative configuration with a known compound neo-echinulin A. The chemical isolation of FDPS-61732-YB from its broth EtOAc extract resulted in several diketopiperazines (chapter 5, 27-29). Another active fungal strain FS-G315695 (T)-WY was identified as Aspergillus ochraceous, the chemical isolation of its mycelia EtOAc extract resulted in one benzodiazepine compound (chapter 6, 18), together with two fatty acids (chapter 6, 16-17). The structure of compound 18 was elucidated and identified to have same relative configuration with the known compound circumdatin E. Media comparison for active fungal strain FS-G315695 (T)-Y was conducted and this work resulted in producing several neo-echinulin analogues (chapter 7, 1-3). The isolation and structure elucidation of these compounds were reported in chapter 7.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Eskitis Institute for Cell and Molecular Therapies
    DOI
    https://doi.org/10.25904/1912/1034
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    natural products
    Australian marine sponge derived fungi
    Australia
    chemical investigation
    Publication URI
    http://hdl.handle.net/10072/367548
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander