• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modelling and Design of Advanced High Frequency Transformers

    Thumbnail
    View/Open
    Wayne Water_Final thesis_2014.pdf (7.346Mb)
    Author(s)
    Water, Wayne
    Primary Supervisor
    Lu, Junwei
    Other Supervisors
    O'Keefe, Steven
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Carbon dioxide emission reduction has been a popular topic in recent years because it alleviates the current global warming crisis. Hence, there is an urgent need to adapt current technologies to help reduce carbon dioxide emissions before the global warming situation worsens. Amongst carbon dioxide reduction technologies, Electric Vehicle (EV) and renewable energy technologies are most likely to assist in improving this current status of the environmental issue in coming years. Due to increased interest in energy storage systems, such as EV and renewable energy, there is a pending need to improve the existing DC-DC converters ...
    View more >
    Carbon dioxide emission reduction has been a popular topic in recent years because it alleviates the current global warming crisis. Hence, there is an urgent need to adapt current technologies to help reduce carbon dioxide emissions before the global warming situation worsens. Amongst carbon dioxide reduction technologies, Electric Vehicle (EV) and renewable energy technologies are most likely to assist in improving this current status of the environmental issue in coming years. Due to increased interest in energy storage systems, such as EV and renewable energy, there is a pending need to improve the existing DC-DC converters used. The DC-DC converter systems used at present are usually bulky, costly and inefficient due to their low operating frequency. Hence, by increasing the operating frequency of the DC-DC converter, the size of the passive elements can be greatly reduced. Among these passive elements, the transformer occupies the most important role indisputably. A High Frequency Coaxial Transformer (HFCT), with a range of 1 kW to 20 kW was designed and introduced in this dissertation. The operating frequency was raised to between 100 kHz and 300 kHz in order to achieve high power densities and high performance efficiency. However, the coupling capacitance accompanied by an increased operating frequency (which couples high frequency noise between the primary and secondary windings) can cause serious common mode problems. Hence, the Faraday shield was placed between the windings of introduced transformers. This reduces the coupling capacitance and consequently the electromagnetic interference. The shielding effect analysis has been conducted to verify the HFCT performance with the insertion of the Faraday shield.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Environment
    DOI
    https://doi.org/10.25904/1912/1066
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Carbon dioxide emission reduction
    Global warming
    High frequency transformers
    Renewable energy sources
    Publication URI
    http://hdl.handle.net/10072/367584
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander