• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Chasing the Dragon: The Resilience of a Species to Climate Change in the Wet Tropics, Australia

    Thumbnail
    View/Open
    Bernays_2015_02Thesis.pdf (5.401Mb)
    Author(s)
    Bernays, Sofie
    Primary Supervisor
    Hughes, Jane
    Other Supervisors
    Schmidt, Daniel
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Throughout history, climatic changes have caused environmental systems to shift and have influenced biotic assemblages. Most of these changes have occurred slowly, over millions of years, enabling species to either adapt to new conditions, endure the changes, or shift distributions to maintain their habitat requirements. Due to the fast rate at which climate change is currently occurring, it is unknown if species will be able to use these mechanisms to successfully respond to this rapidly changing environment. Areas that have small geographical extents, elevated uplands and high numbers of endemic species, such as the Wet ...
    View more >
    Throughout history, climatic changes have caused environmental systems to shift and have influenced biotic assemblages. Most of these changes have occurred slowly, over millions of years, enabling species to either adapt to new conditions, endure the changes, or shift distributions to maintain their habitat requirements. Due to the fast rate at which climate change is currently occurring, it is unknown if species will be able to use these mechanisms to successfully respond to this rapidly changing environment. Areas that have small geographical extents, elevated uplands and high numbers of endemic species, such as the Wet Tropics in north-eastern Queensland, are expected to be particularly vulnerable to climate change. The endemic species in this at-risk area are also expected to be more susceptible to climate change. The endemic Boyd’s forest dragon (Hypsilurus boydii, Macleay) is a highly camouflaged, large lizard that inhabits lowland and upland forests from the northern to the southern boundary of the Wet Tropics. Determining how H. boydii has responded to previous climate change may give insight into how the species may respond to future climatic changes. The main aims of this study were to understand how geographical features and climate have influenced the genetic makeup, morphology and distribution of H. boydii, and to use this information to determine how climate change may influence future populations. This study used genetic analyses to identify evolutionary and geographical relationships across the Wet Tropics (north vs. south of the Black Mountain corridor [BMC] and upland vs. lowland) and within each of these regions; explore morphological variation across the regions and examine conformity to three eco-geographical rules (Bergmann’s rule, Allen’s rule, and the isolation rule); and attempt to predict species distribution patterns of the species throughout the Wet Tropics during past, present and future climatic scenarios. Seventy-seven dragons were collected from nine sites across the Wet Tropics, with a blood sample (for genetic analyses) taken from each individual, 47 of these individuals, from eight of the sites, were sampled for morphological measurements. Due to the cryptic and ambush nature of the species, sample sizes were low and uneven.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    Griffith School of Environment
    DOI
    https://doi.org/10.25904/1912/126
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Note
    In order to comply with copyright the image Figure 1.1 has not been published here.
    Subject
    Lizards habitat
    Boyd’s forest dragon (Hypsilurus boydii, Macleay)
    Climate change, Australia
    Publication URI
    http://hdl.handle.net/10072/367595
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander