• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Gene Expression in Embryonic Chick Heart Development

    Thumbnail
    View/Open
    02Whole.pdf (3.900Mb)
    Author(s)
    Woods, Kyra J.
    Primary Supervisor
    Crane, Denis
    Other Supervisors
    Murrell, Wayne
    Kennedy, Derek
    Year published
    2003
    Metadata
    Show full item record
    Abstract
    Establishment of the biochemical and molecular nature of cardiac development is essential for us to understand the relationship between genetic and morphological aspects of heart formation. The molecular mechanisms that underly heart development are still not clearly defined. To address this issue we have used two approaches to identify genes involved in early chick cardiac development. Differential display previously conducted in our laboratory led to the identification of two gene fragments differentially expressed in the heart that are further described in this thesis. The full-length cDNA sequence of both eukaryotic ...
    View more >
    Establishment of the biochemical and molecular nature of cardiac development is essential for us to understand the relationship between genetic and morphological aspects of heart formation. The molecular mechanisms that underly heart development are still not clearly defined. To address this issue we have used two approaches to identify genes involved in early chick cardiac development. Differential display previously conducted in our laboratory led to the identification of two gene fragments differentially expressed in the heart that are further described in this thesis. The full-length cDNA sequence of both eukaryotic translation initiation factor-2b (eIF-2b) and NADH cytochrome b5 reductase (b5R) were isolated using library screening. The upreglation of these genes during heart development is expected given the heart is the first functional organ to form in vertebrates and protein synthesis and cell metabolism at this stage of development is maximal. Limitations in the differential display approach led to the development and optimisation of a subtractive hybridisation approach for use with small amounts of cells or tissue. To focus on cardiac gene expression during the initial phases of heart development, subtractive hybridization was performed between the cardiogenic lateral plate mesoderm of Hamburger and Hamilton stage 4 embryos and the heart primordia of stage 9 embryos. Of the 87 independent clones identified by this procedure, 59 matched known sequences with high homology, 25 matched unknown expressed sequence tag (EST) sequences with high homology, and 3 did not match any known sequence on the database. Known genes isolated included those involved in transcription, translation, cell signalling, RNA processing, and energy production. Two of these genes, high mobility group phosphoprotein A2 (HMGA2) and C1-20C, an unknown gene, were chosen for further characterisation. The role of each gene in early chick heart development and indeed development in general, was addressed using techniques such as in situ hybridisation, transfection analysis, in ovo electroporation and RNAi. HMGA2 is a nuclear phosphoprotein commonly referred to as an architectural transcription factor due to its ability to modulate DNA conformation. In keeping with this function, HMGA2/GFP fusion protein was shown to localise to the nucleus and in particular, the nucleolus. In situ hybridisation analysis suggested a role for HMGA2 in heart and somite development. HMGA2 expression was first detected at HH stage 5 in the lateral plate mesoderm, a region synonymous with cells specified to the cardiac fate. HMGA2 was also strongly expressed in the presomitic segmental plate mesoderm and as somites developed from the segmental plate mesoderm, the expression of HMGA2 showed an increasingly more restricted domain corresponding to the level of maturation of the somite. Restriction of HMGA2 expression was first detected in the dorsal region of the epithelial somite, then the dorsomedial lip of the dermomyotome, and finally the migrating epaxial myotome cells. The novel intronless gene, C1-20C, predicts a protein of 148 amino acids containing a putative zinc finger binding domain and prenyl binding motif. Zinc binding assays showed that the zinc finger domain of C1-20C/MBP fusion protein bound over six times the quantity of zinc compared to MBP alone, although not in a 1:1 stoichiometric molar ratio. C1-20C/GFP fusion protein was shown to localise to as yet unidentified intracellular cytoplasmic vesicular compartments. These compartments did not colocalise with the endosome/lysosome pathway, aparently ruling out a role for C1-20C in protein trafficking, recycling or degradation. Expression of C1-20C in the chick embryo suggests a possible role in heart and notochord development and preliminary results using siRNA suggest that C1-20C is involved in normal heart looping.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Biomolecular and Biomedical Sciences
    DOI
    https://doi.org/10.25904/1912/2697
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    heart
    heart development
    heart formation
    gene expression
    molecular genetics
    chick heart
    chick embryo
    phosphoproteins
    HMGA2
    high mobility group phosphoprotein A2
    Publication URI
    http://hdl.handle.net/10072/367647
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander