• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Finite Element Simulation of Bone Remodelling in Human Mandible Around Osseointegrated Dental Implant

    Thumbnail
    View/Open
    65451_1.pdf (863.2Kb)
    Author(s)
    Lian, ZQ
    Guan, H
    Loo, YC
    Ivanovski, S
    Johnson, NW
    Griffith University Author(s)
    Loo, Yew-Chaye
    Guan, Hong
    Johnson, Newell W.
    Year published
    2010
    Metadata
    Show full item record
    Abstract
    Modern dental implant is a biocompatible titanium device surgically placed into a jawbone to support a prosthetic tooth crown in order to replace missing teeth. Implants are superior to conventional prostheses, in both function and long-term predictability. However, placement of an implant changes the normal mechanical environment of jawbone, which causes the bone density to redistribute and adapt to the new environment through a process of remodelling. This study aims to predict the density distribution in human jawbone around osseointegrated dental implant. Based on two popular, yet distinctive theories for bone remodelling, ...
    View more >
    Modern dental implant is a biocompatible titanium device surgically placed into a jawbone to support a prosthetic tooth crown in order to replace missing teeth. Implants are superior to conventional prostheses, in both function and long-term predictability. However, placement of an implant changes the normal mechanical environment of jawbone, which causes the bone density to redistribute and adapt to the new environment through a process of remodelling. This study aims to predict the density distribution in human jawbone around osseointegrated dental implant. Based on two popular, yet distinctive theories for bone remodelling, a new remodelling algorithm is proposed. The proposed algorithm is verified by a two-dimensional (2D) plate model. Then, a 2D finite element model of implant and jawbone is studied. The effects of two parameters, viz the reference value of strain energy density (SED) and 'lazy zone' region, on density distribution, are also examined. This study has demonstrated that consideration of the lazy zone, is less important than consideration of the stress and strain (quantified as SED) induced within the bone. Taking into account both 'lazy zone' effect and self-organisational control process, the proposed bone remodelling algorithm has overcome the shortcomings of the two existing theories.
    View less >
    Conference Title
    9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS
    Volume
    10
    Issue
    1
    Publisher URI
    http://dx.doi.org/10.1088/1757-899X/10/1/012125
    Copyright Statement
    © 2010 IOP Publishing Ltd. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this conference please refer to the conference's website or contact the authors.
    Subject
    Biomechanical engineering
    Publication URI
    http://hdl.handle.net/10072/36775
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander