• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Optimal Algorithmic Techniques of LASIK Procedures

    Thumbnail
    View/Open
    02Whole.pdf (1.817Mb)
    Author(s)
    Yi, Fan
    Primary Supervisor
    Le, Khoa Nguyen
    Other Supervisors
    Iskander, Robert
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    Clinical wavefront-guided corneal ablation has been now the most technologically advanced method to reduce the dependence of glasses and contact lenses. It has the potential not only to eliminate spherocylindrical errors but also to reduce higher-order aberrations (HOA). Recent statistics show that more than 96% of the patients who received laser in situ keratomileusis (LASIK) treatment reported their satisfaction about the improvement on vision, six months after the surgery. However, there are still patients complaining that their vision performance did not achieve the expectation or was even worse than before surgery. The ...
    View more >
    Clinical wavefront-guided corneal ablation has been now the most technologically advanced method to reduce the dependence of glasses and contact lenses. It has the potential not only to eliminate spherocylindrical errors but also to reduce higher-order aberrations (HOA). Recent statistics show that more than 96% of the patients who received laser in situ keratomileusis (LASIK) treatment reported their satisfaction about the improvement on vision, six months after the surgery. However, there are still patients complaining that their vision performance did not achieve the expectation or was even worse than before surgery. The reasons causing the unexpected post-surgical outcome include undercorrection, overcorrection, induced HOA, and other postoperative diseases, most of which are caused by inaccurate ablation besides other pathological factors. Therefore, to find out the method to optimize the LASIK procedures and provide a higher surgical precision has become increasingly important. A proper method to calculate ablation profile and an effective way to control the laser beam size and shape are key aspects in this research to resolve the problem. Here in this Master of Philosophy degree thesis, the author has performed a meticulous study on the existing methods of ablation profile calculation and investigated the efficiency of wavefront only ablation by a computer simulation applying real patient data. Finally, the concept of a refractive surgery system with dynamical beam shaping function is sketched, which can theoretically overcome the disadvantages of traditional procedures with a finite laser beam size.
    View less >
    Thesis Type
    Thesis (Masters)
    Degree Program
    Master of Philosophy (MPhil)
    School
    School of Engineering
    DOI
    https://doi.org/10.25904/1912/369
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Higher order aberration
    refractive error
    LASIK
    beam shaping
    corneal ablation
    wavefront
    Publication URI
    http://hdl.handle.net/10072/368097
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander