• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    • Home
    • Griffith Theses
    • Theses - Higher Degree by Research
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Theoretical Investigation of Intracellular Transport by Molecular Motors

    Thumbnail
    View/Open
    Khataee Gavgani_2016_01Thesis.pdf (1.881Mb)
    Author(s)
    Khataee Gavgani, Hamidreza
    Primary Supervisor
    Liew, Alan
    Other Supervisors
    Pullan, Wayne
    Zhong, Yongmin
    Howard, Jonathon
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Molecular motors are protein nanomachines that organize the internal order of all eukaryotic cells by shuttling intracellular cargos. Kinesins, dyneins, and myosins are three identified superfamilies of molecular motors which often function together within the cells. All of these motors power cellular motility using energy derived from adenosine triphosphate (ATP) hydrolysis. Molecular biology has revealed that the functional impairments of molecular motors would contribute to various human diseases, such as Alzheimer and cancer. Engineering developments have also emerged regarding the utilization of molecular motors in ...
    View more >
    Molecular motors are protein nanomachines that organize the internal order of all eukaryotic cells by shuttling intracellular cargos. Kinesins, dyneins, and myosins are three identified superfamilies of molecular motors which often function together within the cells. All of these motors power cellular motility using energy derived from adenosine triphosphate (ATP) hydrolysis. Molecular biology has revealed that the functional impairments of molecular motors would contribute to various human diseases, such as Alzheimer and cancer. Engineering developments have also emerged regarding the utilization of molecular motors in nanorobotics with a variety of missions, such as molecular communications. Despite this progress, the properties of intracellular cargo transport are not well understood. Motivated by the recent experimental findings, this thesis proposes computational and mathematical frameworks to investigate two different modes of intracellular cargo transport driven by (i) a single motor and by (ii) an assembly of two coupled identical motors. We focus on the cargo transport by kinesins because kinesin stepping kinetic scheme has been developed previously, and recent experiments have further measured input parameters for our theory. Nevertheless, our models are rather general and can be applied to other types of cytoskeletal molecular motors.
    View less >
    Thesis Type
    Thesis (PhD Doctorate)
    Degree Program
    Doctor of Philosophy (PhD)
    School
    School of Information and Communication Technology
    DOI
    https://doi.org/10.25904/1912/184
    Copyright Statement
    The author owns the copyright in this thesis, unless stated otherwise.
    Item Access Status
    Public
    Subject
    Molecular motors
    Protein nanomachines
    Eukaryotic cells
    Adenosine triphosphate (ATP) hydrolysis
    Alzheimer disease
    Cancer
    Intracellular transport
    Publication URI
    http://hdl.handle.net/10072/368174
    Collection
    • Theses - Higher Degree by Research

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander