• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection

    Thumbnail
    View/Open
    NgPUB2697.pdf (974.8Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Ng, Susanna S
    Souza-Fonseca-Guimaraes, Fernando
    Rivera, Fabian de Labastida
    Amante, Fiona H
    Kumar, Rajiv
    Gao, Yulong
    Sheel, Meru
    Beattie, Lynette
    de Oca, Marcela Montes
    Guillerey, Camille
    Edwards, Chelsea L
    Faleiro, Rebecca J
    Frame, Teija
    Bunn, Patrick T
    Vivier, Eric
    Godfrey, Dale I
    Pellicci, Daniel G
    Lopez, J Alejandro
    Andrews, Katherine T
    Huntington, Nicholas D
    Smyth, Mark J
    McCarthy, James
    Engwerda, Christian R
    Griffith University Author(s)
    Andrews, Katherine T.
    Lopez Ramirez, Alejandro
    Year published
    2018
    Metadata
    Show full item record
    Abstract
    Objectives Innate lymphoid cells (ILCs) share many characteristics with CD4+ T cells, and group 1 ILCs share a requirement for T-bet and the ability to produce IFNγ with T helper 1 (Th1) cells. Given this similarity, and the importance of Th1 cells for protection against intracellular protozoan parasites, we aimed to characterise the role of group 1 ILCs during Plasmodium infection. Methods We quantified group 1 ILCs in peripheral blood collected from subjects infected with with Plasmodium falciparum 3D7 as part of a controlled human malaria infection study, and in the liver and spleens of PcAS-infected mice. We used ...
    View more >
    Objectives Innate lymphoid cells (ILCs) share many characteristics with CD4+ T cells, and group 1 ILCs share a requirement for T-bet and the ability to produce IFNγ with T helper 1 (Th1) cells. Given this similarity, and the importance of Th1 cells for protection against intracellular protozoan parasites, we aimed to characterise the role of group 1 ILCs during Plasmodium infection. Methods We quantified group 1 ILCs in peripheral blood collected from subjects infected with with Plasmodium falciparum 3D7 as part of a controlled human malaria infection study, and in the liver and spleens of PcAS-infected mice. We used genetically-modified mouse models, as well as cell-depletion methods in mice to characterise the role of group 1 ILCs during PcAS infection. Results In a controlled human malaria infection study, we found that the frequencies of circulating ILC1s and NK cells decreased as infection progressed but recovered after volunteers were treated with antiparasitic drug. A similar observation was made for liver and splenic ILC1s in P. chabaudi chabaudi AS (PcAS)-infected mice. The decrease in mouse liver ILC1 frequencies was associated with increased apoptosis. We also identified a population of cells within the liver and spleen that expressed both ILC1 and NK cell markers, indicative of plasticity between these two cell lineages. Studies using genetic and cell-depletion approaches indicated that group 1 ILCs have a limited role in antiparasitic immunity during PcAS infection in mice. Discussion Our results are consistent with a previous study indicating a limited role for natural killer (NK) cells during Plasmodium chabaudi infection in mice. Additionally, a recent study reported the redundancy of ILCs in humans with competent B and T cells. Nonetheless, our results do not rule out a role for group 1 ILCs in human malaria in endemic settings given that blood stage infection was initiated intravenously in our experimental models, and thus bypassed the liver stage of infection, which may influence the immune response during the blood stage. Conclusion Our results show that ILC1s are lost early during mouse and human malaria, and this observation may help to explain the limited role for these cells in controlling blood stage infection.
    View less >
    Journal Title
    Clinical & Translational Immunology
    Volume
    7
    Issue
    1
    DOI
    https://doi.org/10.1002/cti2.1003
    Copyright Statement
    © 2018 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australasian Society for Immunology Inc. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
    Subject
    Immunology
    Cellular immunology
    Pharmacology and pharmaceutical sciences
    Publication URI
    http://hdl.handle.net/10072/368364
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander